136
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel coupled algorithm-based method, and the characteristics and driving mechanism of water shortage in the upper Yellow River

, , ORCID Icon, , , & show all
Pages 226-240 | Received 22 Feb 2023, Accepted 28 Nov 2023, Published online: 31 Jan 2024

References

  • Adarsh, S. and Reddy, M.J., 2015. Multiscale analysis of suspended sediment concentration data from natural channels using the Hilbert-Huang transform. Aquatic Procedia, 4, 780–788. doi:10.1016/j.aqpro.2015.02.097
  • Ault, T.R., 2020. On the essentials of drought in a changing climate. Science, 368 (6488), 256–260. doi:10.1126/science.aaz5492
  • Chen, Y. and Qian, H., 2019. Variation in runoff series regimes and the impacts of human activities in the upper Yellow River basin. Polish Journal of Environmental Studies, 28 (3), 1071–1082. doi:10.15244/pjoes/86218
  • Cong, Z., et al., 2009. Hydrological trend analysis in the Yellow River basin using a distributed hydrological model. Water Resources Research, 45 (W00A13), 1–13. doi:10.1029/2008WR006852
  • Cook, E.R., Meko, D.M., and Stockton, C.W., 1997. A new assessment of possible solar and lunar forcing of the bidecadal drought rhythm in the Western United States. Journal of Climate, 10 (6), 1343–1356. doi:10.1175/1520-0442(1997)010<1343:ANAOPS>2.0.CO;2
  • Fan, L., et al., 2017. Exploration of use of copulas in analysing the relationship between precipitation and meteorological drought in Beijing, China. Advances in Meteorology, 2017 (4650284), 1–11.
  • Gu, L., et al., 2020. Drought hazard transferability from meteorological to hydrological propagation. Journal of Hydrology, 585 (124761), 1–18. doi:10.1016/j.jhydrol.2020.124761
  • Huang, N.E., 2000. New method for nonlinear and nonstationary time series analysis: empirical mode decomposition and Hilbert spectral analysis. Proceedings of SPIE - The International Society for Optical Engineering, 4056, 197–209.
  • Huang, W.-C., et al., 2020. Data synthesis based on empirical mode decomposition. Journal of Hydrologic Engineering, 25 (7), 1–13. doi:10.1061/(ASCE)HE.1943-5584.0001935
  • Huang, N.E., Shen, Z., and Long, S.R., 1999. A new view of nonlinear water waves: the Hilbert spectrum. Annual Review of Fluid Mechanics, 31 (1), 417–457. doi:10.1146/annurev.fluid.31.1.417
  • Immerzeel, W.W., van Beek, L.P.H., and Bierkens, M.F.P., 2010. Climate change will affect the Asian water towers. Science, 328 (5984), 1382–1385. doi:10.1126/science.1183188
  • Jung, W. and Chang, H., 2012. Climate change impacts on spatial patterns in drought risk in the Willamette River basin, Oregon, USA. Theoretical and Applied Climatology, 108 (3–4), 355–371. doi:10.1007/s00704-011-0531-8
  • Keskin, F. and Sorman, A.U., 2010. Assessment of the dry and wet period severity with hydrometeorological index. International Journal of Water Resources and Environmental Engineering, 2 (2), 29–39.
  • Lan, Y., et al., 2003. The relationship between ENSO cycle and high and low-flow in the upper Yellow River. Journal of Geographical Sciences, 13 (1), 105–111. doi:10.1007/BF02873153
  • Li, B., et al., 2018. Connections between meteorological and hydrological droughts in a semi-arid basin of the middle Yellow River. PIAHS, 379, 403–407.
  • Li, C. and Yang, Z., 2004. Natural runoff changes in the Yellow River basin. Journal of Geographical Sciences, 14 (4), 427–436. doi:10.1007/BF02837486
  • Li, E., Mu, X., and Zhao, G., 2014. Temporal changes in annual runoff and influential factors in the upper and middle reaches of Yellow River from 1919-2010. Advances in Water Science, 25 (2), 155–163.
  • Li, X., et al., 2022. Evolutionary effect separation of watershed characteristics for the multi-source contributions to runoff changes in the Yellow River, China. Ecological Indicators, 143 (109398), 1–15. doi:10.1016/j.ecolind.2022.109398
  • Li, X., Su, X., and Wei, Y., 2019. Multistage integrated water security assessment in a typical region of Northwestern China. Journal of Cleaner Production, 220, 732–744. doi:10.1016/j.jclepro.2019.02.033
  • Li, Y., et al., 2018. A new underwater acoustic signal denoising technique based on CEEMDAN, mutual information, permutation entropy, and wavelet threshold denoising. Entropy, 20 (563), 2–23. doi:10.3390/e20080563
  • Liu, Y. and Wang, L., 2021. Drought prediction method based on an improved CEEMDAN-QR-BL model. IEEE Access, 9, 6050–6062. doi:10.1109/ACCESS.2020.3048745
  • Liu, Y., et al., 2021. Runoff prediction and analysis based on improved CEEMDAN-OS-QR-ELM. IEEE Access, 9, 57311–57324. doi:10.1109/ACCESS.2021.3072673
  • Ma, F., et al., 2019. Self-adaptive fault feature extraction of rolling bearings based on enhancing mode characteristic of complete ensemble empirical mode decomposition with adaptive noise. Symmetry, 11 (513), 1–20. doi:10.3390/sym11040513
  • Ma, M., et al., 2016. Hydrologic model-based Palmer indices for drought characterization in the Yellow River basin, China. Stochastic Environmental Research & Risk Assessment, 30 (5), 1401–1420. doi:10.1007/s00477-015-1136-z
  • McKee, T.B., Doesken, N.J., and Kleist, J., 1993. The relationship of drought frequency and duration to timescales. In: Eighth Conference on Applied Climatology, Anaheim, California.
  • Ministry of Water Resources of the People’s Republic of China, 2016. Regulation for hydrologic computation of water resources and hydropower projects (SL278-2002). Beijing, China: China Water & Power Press.
  • Mullin, M., 2020. The effects of drinking water service fragmentation on drought-related water security. Science, 368 (6488), 274–277. doi:10.1126/science.aba7353
  • Nalband, S., et al., 2018. Time-frequency based feature extraction for the analysis of vibroarthographic signals. Computers and Electrical Engineering, 69, 720–731. doi:10.1016/j.compeleceng.2018.02.046
  • Nazir, H.M., et al., 2019. An improved framework to predict river flow time series data. PeerJ, 7 (e7183), 1–22. doi:10.7717/peerj.7183
  • Omer, A., et al., 2020. Natural and anthropogenic influences on the recent droughts in Yellow River basin, China. Science of the Total Environment, 704 (135428), 1–15. doi:10.1016/j.scitotenv.2019.135428
  • Pal, D. and Chunchu, M., 2018. Smoothing of vehicular trajectories under heterogeneous traffic conditions to extract microscopic data. Canadian Journal of Civil Engineering, 45 (6), 435–445. doi:10.1139/cjce-2017-0452
  • Qiang, Z., Xu, C.Y., and Tao, Y., 2009. Variability of water resource in the Yellow River basin of past 50 years, China. Water Resources Management, 23 (6), 1157–1170. doi:10.1007/s11269-008-9320-2
  • Qiu, J., 2010. China drought highlights future climate threats. Nature, 465 (7295), 142–143. doi:10.1038/465142a
  • Rezaie-Balf, M., et al., 2019. Enhancing streamflow forecasting using the augmenting ensemble procedure coupled machine learning models: case study of Aswan high dam. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 64 (13), 1629–1646. doi:10.1080/02626667.2019.1661417
  • Seager, R., et al., 2007. Blueprints for medieval hydroclimate. Quaternary Science Reviews, 26 (19–21), 2322–2336. doi:10.1016/j.quascirev.2007.04.020
  • She, D., et al., 2013. Spatio-temporal variation and statistical characteristic of extreme dry spell in Yellow River basin, China. Theoretical and Applied Climatology, 112 (1–2), 201–213. doi:10.1007/s00704-012-0731-x
  • Shukla, S. and Wood, A.W., 2008. Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 35 (L02405), 1–7. doi:10.1029/2007GL032487
  • Smakhtin, V.U., 2001. Low flow hydrology: a review. Journal of Hydrology, 240 (3–4), 147–186.
  • Torres, M.E., et al., 2011. Complete ensemble empirical mode decomposition with adaptive noise. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2011), Prague, Czech Republic, 1–4.
  • Van Langen, S.C.H., et al., 2021. Effect of a reservoir network on drought propagation in a semi-arid catchment in Brazil. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 66 (10), 1567–1583. doi:10.1080/02626667.2021.1955891
  • Van Loon, A.F., et al., 2016. Drought in the anthropocene. Nature Geoscience, 9 (2), 89–91. doi:10.1038/ngeo2646
  • Van Loon, A.F. and Laaha, G., 2015. Hydrological drought severity explained by climate and catchment characteristics. Journal of Hydrology, 526, 3–14. doi:10.1016/j.jhydrol.2014.10.059
  • Vicente-Serrano, S.M., et al., 2012. Accurate computation of a streamflow drought index. Journal of Hydrologic Engineering, 17 (2), 318–332. doi:10.1061/(ASCE)HE.1943-5584.0000433
  • Viste, E., Korecha, D., and Sorteberg, A., 2013. Recent drought and precipitation tendencies in Ethiopia. Theoretical and Applied Climatology, 112 (3–4), 535–551. doi:10.1007/s00704-012-0746-3
  • Wan, W., et al., 2017. Hydrological drought in the anthropocene: impacts of local water extraction and reservoir regulation in the U.S. Journal of Geophysical Research: Atmospheres, 122 (21), 11313–311328.
  • Wang, F., et al., 2020. Comprehensive evaluation of hydrological drought and its relationships with meteorological drought in the Yellow River basin, China. Journal of Hydrology, 584 (124751), 1–13. doi:10.1016/j.jhydrol.2020.124751
  • Wang, Y., et al., 2016. The relationship between irrigation water demand and drought in the Yellow River basin. PIAHS, 374, 129–136.
  • Wu, J., et al., 2019. Assessing the impact of human regulations on hydrological drought development and recovery based on a ‘simulated-observed’ comparison of the SWAT model. Journal of Hydrology, 577, 1–13. doi:10.1016/j.jhydrol.2019.123990
  • Wu, Z. and Huang, N., 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1 (1), 1–41. doi:10.1142/S1793536909000047
  • Xu, H. and Zeng, Y., 2006. Using landsat TM imagery to detect desertification in Gonghe basin at the upper reaches of the Yellow River. International Journal of Mining Science and Technology, 16 (3), 287–291.
  • Xu, J., 2015. Complex response of runoff-precipitation ratio to the rising air temperature: the source area of the Yellow River, China. Regional Environmental Change, 15 (1), 35–43. doi:10.1007/s10113-014-0617-9
  • Yan, B., et al., 2019. Analysis of variation characteristics of runoff at multi-time scales under the influence of reservoir. IOP Conference Series: Earth and Environmental Science, 344 ( 012165), 1–10. doi:10.1088/1755-1315/344/1/012165
  • Yang, H., et al., 2019. Evaluation of HHT approach for estimating agricultural drought trend and frequency based on modified soil water deficit index (MSWDI). Theoretical and Applied Climatology, 137 (3–4), 1825–1842. doi:10.1007/s00704-018-2688-x
  • Yu, Z.Q. and Ito, E., 1999. Possible solar forcing of century-scale drought frequency in the northern great plains. Geology, 27 (3), 263–266. doi:10.1130/0091-7613(1999)027<0263:PSFOCS>2.3.CO;2
  • Yuan, Z., Yan, D., and Yang, Z., 2015. Temporal and spatial variability of drought in Huang-Huai-Hai River basin, China. Theoretical and Applied Climatology, 122 (3–4), 755–769. doi:10.1007/s00704-014-1332-7
  • Yuan, Z., et al., 2018. Attribution assessment and projection of natural runoff change in the Yellow River basin of China. Mitigation and Adaptation Strategies for Global Change, 23 (1), 27–49. doi:10.1007/s11027-016-9727-7
  • Zhang, Y., Yang, Z., and Wang, X., 2006. Methodology to determine regional water demand for instream flow and its application in the Yellow River basin. Journal of Environmental Sciences, 18 (5), 1031–1039. doi:10.1016/S1001-0742(06)60034-X
  • Zhu, Y., et al., 2019. Three dimensional characterization of meteorological and hydrological droughts and their probabilistic links. Journal of Hydrology, 578 (124016), 1–14. doi:10.1016/j.jhydrol.2019.124016

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.