152
Views
1
CrossRef citations to date
0
Altmetric
Featured Article

A stochastic framework for rainfall intensity–time scale–return period relationships. Part ΙΙ: point modelling and regionalization over Greece

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , & show all
Pages 1092-1112 | Received 12 Nov 2023, Accepted 04 Apr 2024, Published online: 05 Jun 2024

References

  • Ahrens, B., 2006. Distance in spatial interpolation of daily rain gauge data. Hydrology and Earth System Sciences, 10 (2), 197–208. doi:10.5194/hess-10-197-2006.
  • Aron, G., et al. 1987. Regional Rainfall intensity‐duration‐frequency curves for Pennsylvania 1. Journal of the American Water Resources Association, 23 (3), 479–485. doi:10.1111/j.1752-1688.1987.tb00826.x.
  • Avanzi, F., et al. 2015. Orographic signature on extreme precipitation of short durations. Journal of Hydrometeorology, 16 (1), 278–294. doi:10.1175/JHM-D-14-0063.1.
  • Barbosa, A.D.G., et al. 2022. Assessing intensity-duration-frequency equations and spatialization techniques across the Grande River Basin in the state of Bahia, Brazil. RBRH, 27.
  • Bernard, M.M., 1932. Formulas for rainfall intensities of long duration. Transactions of the American Society of Civil Engineers, 96 (1), 592–606. doi:10.1061/TACEAT.0004323.
  • Blanchet, J., et al. 2016. A regional GEV scale-invariant framework for intensity–duration–frequency analysis. Journal of Hydrology, 540, 82–95. doi:10.1016/j.jhydrol.2016.06.007.
  • Blöschl, G. and Grayson, R., 2001. Spatial observations and interpolation. In: R. Grayson and G. Blöschl, eds. Spatial patterns in catchment hydrology. Cambridge, UK: Cambridge University Press, 17–50.
  • Bohling, G., 2005. Introduction to geostatistics and variogram analysis. Kansas Geological Survey, 1 (10), 1–20.
  • Burlando, P. and Rosso, R., 1996. Scaling and muitiscaling models of depth-duration-frequency curves for storm precipitation. Journal of Hydrology, 187 (1–2), 45–64. doi:10.1016/S0022-1694(96)03086-7.
  • Burn, D.H., 2014. A framework for regional estimation of intensity–duration–frequency (IDF) curves. Hydrological Processes, 28 (14), 4209–4218. doi:10.1002/hyp.10231.
  • Burrough, P.A., McDonnell, R.A., and Lloyd, C.D., 2015. Principles of geographical information systems. USA: Oxford University Press.
  • Cassalho, F., et al. 2019. Artificial intelligence for identifying hydrologically homogeneous regions: a state‐of‐the‐art regional flood frequency analysis. Hydrological Processes, 33 (7), 1101–1116. doi:10.1002/hyp.13388.
  • Ceresetti, D., et al. 2012. Evaluation of classical spatial-analysis schemes of extreme rainfall. Natural Hazards and Earth System Sciences, 12 (11), 3229–3240. doi:10.5194/nhess-12-3229-2012.
  • Claps, P., Ganora, D., and Mazzoglio, P., 2022. Rainfall regionalization techniques. In: R. Morbidelli, ed. Rainfall. Elsevier, 327–350. doi:10.1016/B978-0-12-822544-8.00013-5.
  • Courty, L.G., et al. 2019. Intensity-duration-frequency curves at the global scale. Environmental Research Letters, 14 (8), 084045. doi:10.1088/1748-9326/ab370a.
  • Daly, C., 2006. Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26 (6), 707–721. doi:10.1002/joc.1322.
  • Deidda, R., Hellies, M., and Langousis, A., 2021. A critical analysis of the shortcomings in spatial frequency analysis of rainfall extremes based on homogeneous regions and a comparison with a hierarchical boundaryless approach. Stochastic Environmental Research and Risk Assessment, 35 (12), 2605–2628. doi:10.1007/s00477-021-02008-x.
  • De Luca, D.L. and Napolitano, F., 2023. A user-friendly software for modelling extreme values: EXTRASTAR (EXTRemes Abacus for STAtistical Regionalization). Environmental Modelling and Software, 161, 105622. doi:10.1016/j.envsoft.2023.105622.
  • Faulkner, D.S. and Prudhomme, C., 1998. Mapping an index of extreme rainfall across the UK. Hydrology and Earth System Sciences, 2 (2/3), 183–194. doi:10.5194/hess-2-183-1998.
  • Forestieri, A., et al. 2018. Regional frequency analysis of extreme rainfall in Sicily (Italy). International Journal of Climatology, 38, e698–e716. doi:10.1002/joc.5400.
  • Goovaerts, P., 1997. Geostatistics for natural resources evaluation. New York: Oxford University Press.
  • Goovaerts, P., 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228 (1–2), 113–129. doi:10.1016/S0022-1694(00)00144-X.
  • Hailegeorgis, T.T., Thorolfsson, S.T., and Alfredsen, K., 2013. Regional frequency analysis of extreme precipitation with consideration of uncertainties to update IDF curves for the city of Trondheim. Journal of Hydrology, 498, 305–318. doi:10.1016/j.jhydrol.2013.06.019.
  • Haruna, A., Blanchet, J., and Favre, A.C., 2023. Modeling intensity‐duration‐frequency curves for the whole range of non‐zero precipitation: a comparison of models. Water Resources Research, 59 (6), e2022WR033362. doi:10.1029/2022WR033362.
  • Hengl, T., 2006. Finding the right pixel size. Computers & Geosciences, 32 (9), 1283–1298. doi:10.1016/j.cageo.2005.11.008.
  • Hosking, J.R.M. and Wallis, J.R., 1997. Regional frequency analysis.
  • Huffman, G.J., et al. 2019. GPM IMERG final precipitation L3 half hourly 0.1 degree x 0.1 degree V06. Greenbelt, MD: Goddard Earth Sciences Data and Information Services Center (GES DISC). doi:10.5067/GPM/IMERG/3B-HH/06.
  • Hutchinson, M.F., 1995. Interpolating mean rainfall using thin plate smoothing splines. International Journal of Geographical Information Systems, 9 (4), 385–403. doi:10.1080/02693799508902045.
  • Iliopoulou, T., et al. 2023. Regionalized design rainfall curves for Greece ( No. EGU23-8740). Copernicus Meetings.
  • Iliopoulou, T. and Koutsoyiannis, D. 2022. A parsimonious approach for regional design rainfall estimation: the case study of Athens. In: Proceedings of 7th IAHR Europe Congress “Innovative Water Management in a Changing Climate” Athens: International Association for Hydro-Environment Engineering and Research (IAHR).
  • Iliopoulou, T., Malamos, N., and Koutsoyiannis, D., 2022. Regional ombrian curves: design rainfall estimation for a spatially diverse rainfall regime. Hydrology, 9 (5), 67. doi:10.3390/hydrology9050067.
  • Jalbert, J., Genest, C., and Perreault, L., 2022. Interpolation of precipitation extremes on a large domain toward idf curve construction at unmonitored locations. Journal of Agricultural, Biological and Environmental Statistics, 27 (3), 461–486. doi:10.1007/s13253-022-00491-5.
  • Jarvis, A., et al. 2008. Hole-filled SRTM for the globe Version 4. Available from the CGIAR-CSI SRTM 90m Database. http://srtm.csi.cgiar.org [Accessed 01 Sep 2022].
  • Koutsoyiannis, D., 2004. Statistics of extremes and estimation of extreme rainfall: i. Theoretical investigation/Statistiques de valeurs extrêmes et estimation de précipitations extrêmes: i. Recherche théorique. Hydrological Sciences Journal, 49 (4), 590.
  • Koutsoyiannis, D., 2019. Knowable moments for high-order stochastic characterization and modelling of hydrological processes. Hydrological Sciences Journal, 64 (1), 19–33. doi:10.1080/02626667.2018.1556794.
  • Koutsoyiannis, D., 2023. Stochastics of hydroclimatic extremes - a cool look at risk. 3ed. Athens: Kallipos Open Academic Editions.
  • Koutsoyiannis, D., et al. 2023a. Technical report, production of maps with updated parameters of the ombrian curves at country level (implementation of the EU directive 2007/60/EC in Greece). Department of Water Resources and Environmental Engineering – National Technical University of Athens.
  • Koutsoyiannis, D., et al. 2023b. In search of climate crisis in Greece using hydrological data: 404 not found. Water, 15 (9), 1711. doi:10.3390/w15091711.
  • Koutsoyiannis, D., et al., 2024. A stochastic framework for rainfall intensity–timescale–return period relationships. Part I: theory and estimation strategies. Hydrological Sciences Journal. doi:10.1080/02626667.2024.2345813
  • Koutsoyiannis, D. and Iliopoulou, T., 2022. Ombrian curves advanced to stochastic modeling of rainfall intensity. In: R. Morbidelli, ed. Rainfall. Elsevier, 261–284. doi:10.1016/B978-0-12-822544-8.00003-2.
  • Koutsoyiannis, D., Kozonis, D., and Manetas, A., 1998. A mathematical framework for studying rainfall intensity-duration-frequency relationships. Journal of Hydrology, 206 (1–2), 118–135. doi:10.1016/S0022-1694(98)00097-3.
  • Koutsoyiannis, D. and Papalexiou, S.M., 2017. Extreme rainfall: global perspective. In: V.P. Singh, ed. Handbook of applied hydrology. 2nd ed. New York, NY: McGraw-Hill, 74.1–74.16.
  • Lanciotti, S., et al. 2022. Intensity–duration–frequency curves in a data-rich era: a review. Water, 14 (22), 3705. doi:10.3390/w14223705.
  • Libertino, A., et al. 2018. Regional-scale analysis of extreme precipitation from short and fragmented records. Advances in Water Resources, 112, 147–159. doi:10.1016/j.advwatres.2017.12.015.
  • Li, J. and Heap, A.D., 2008. A review of spatial interpolation methods for environmental scientists.
  • Lin, G.F. and Chen, L.H., 2006. Identification of homogeneous regions for regional frequency analysis using the self-organizing map. Journal of Hydrology, 324 (1–4), 1–9. doi:10.1016/j.jhydrol.2005.09.009.
  • Madsen, H., et al. 2017. Regional frequency analysis of short duration rainfall extremes using gridded daily rainfall data as co-variate. Water Science & Technology, 75 (8), 1971–1981. doi:10.2166/wst.2017.089.
  • Malamos, N. and Koutsoyiannis, D., 2016a. Bilinear surface smoothing for spatial interpolation with optional incorporation of an explanatory variable. Part 1: theory. Hydrological Sciences Journal, 61 (3), 519–526. doi:10.1080/02626667.2015.1051980.
  • Malamos, N. and Koutsoyiannis, D., 2016b. Bilinear surface smoothing for spatial interpolation with optional incorporation of an explanatory variable. Part 2: application to synthesized and rainfall data. Hydrological Sciences Journal, 61 (3), 527–540. doi:10.1080/02626667.2015.1080826.
  • Malamos, N. and Koutsoyiannis, D., 2018. Field survey and modelling of irrigation water quality indices in a Mediterranean island catchment: a comparison between spatial interpolation methods. Hydrological Sciences Journal, 63 (10), 1447–1467. doi:10.1080/02626667.2018.1508874.
  • Marta, B.M., et al. 2009. Estimation of IDF curves of extreme rainfall by simple scaling in Slovakia. Contributions to Geophysics and Geodesy, 39 (3), 187–206.
  • Mascaro, G., 2020. Comparison of local, regional, and scaling models for rainfall intensity–duration–frequency analysis. Journal of Applied Meteorology and Climatology, 59 (9), 1519–1536. doi:10.1175/JAMC-D-20-0094.1.
  • Mazzoglio, P., et al. 2022. The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy. Hydrology and Earth System Sciences, 26 (6), 1659–1672. doi:10.5194/hess-26-1659-2022.
  • Molini, A., Lanza, L.G., and La Barbera, P., 2005. The impact of tipping‐bucket raingauge measurement errors on design rainfall for urban‐scale applications. Hydrological Processes: An International Journal, 19 (5), 1073–1088. doi:10.1002/hyp.5646.
  • Ombadi, M., et al. 2018. Developing intensity‐duration‐frequency (IDF) curves from satellite‐based precipitation: methodology and evaluation. Water Resources Research, 54 (10), 7752–7766. doi:10.1029/2018WR022929.
  • Overeem, A., Buishand, A., and Holleman, I., 2008. Rainfall depth-duration-frequency curves and their uncertainties. Journal of Hydrology, 348 (1–2), 124–134. doi:10.1016/j.jhydrol.2007.09.044.
  • Perica, S., et al. 2009. Precipitation-frequency Atlas of the United States. Volume 4 Version 3. Hawaiian Islands.
  • Rao, A.R. and Srinivas, V.V., 2008. Introduction. In: A.R. Rao and V.V. Srinivas, eds. Regionalization of watersheds: an approach based on cluster analysis. Dordrecht: Springer Science+Business Media B.V, 1–16. doi:10.1007/978-1-4020-6852-2_1.
  • Sangüesa, C., et al. 2023. Comparing methods for the regionalization of intensity− duration− frequency (IDF) curve parameters in sparsely-gauged and ungauged areas of Central Chile. Hydrology, 10 (9), 179. doi:10.3390/hydrology10090179.
  • Shehu, B., et al. 2023. Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany. Hydrology and Earth System Sciences, 27 (5), 1109–1132. doi:10.5194/hess-27-1109-2023.
  • Sherman, C.W., 1931. Frequency and intensity of excessive rainfalls at Boston, Massachusetts. Transactions of the American Society of Civil Engineers, 95 (1), 951–960. doi:10.1061/TACEAT.0004286.
  • Svensson, C. and Jones, D.A., 2010. Review of rainfall frequency estimation methods. Journal of Flood Risk Management, 3 (4), 296–313. doi:10.1111/j.1753-318X.2010.01079.x.
  • Szolgay, J., et al. 2009. Comparison of mapping approaches of design annual maximum daily precipitation. Atmospheric Research, 92 (3), 289–307. doi:10.1016/j.atmosres.2009.01.009.
  • Tegos, A., et al. 2017. Parametric modelling of potential evapotranspiration: a global survey. Water, 9, 795. doi:10.3390/w9100795
  • Tegos, A., Malamos, N., and Koutsoyiannis, D., 2015. A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman–Monteith formula. Journal of Hydrology, 524, 708–717. doi:10.1016/j.jhydrol.2015.03.024.
  • Trefry, C.M., Watkins, D.W., Jr, and Johnson, D., 2005. Regional rainfall frequency analysis for the state of Michigan. Journal of Hydrologic Engineering, 10 (6), 437–449. doi:10.1061/(ASCE)1084-0699(2005)10:6(437).
  • Uboldi, F., et al. 2014. A spatial bootstrap technique for parameter estimation of rainfall annual maxima distribution. Hydrology and Earth System Sciences, 18 (3), 981–995. doi:10.5194/hess-18-981-2014.
  • Ulrich, J., et al. 2020. Estimating IDF curves consistently over durations with spatial covariates. Water, 12 (11), 3119. doi:10.3390/w12113119.
  • Wahba, G. and Wendelberger, J., 1980. Some new mathematical methods for variational objective analysis using splines and cross validation. Monthly Weather Review, 108 (8), 1122–1143. doi:10.1175/1520-0493(1980)108<1122:SNMMFV>2.0.CO;2.
  • Watkins, D.W., Jr, Link, G.A., and Johnson, D., 2005. Mapping regional precipitation intensity duration frequency estimates 1. Journal of the American Water Resources Association, 41 (1), 157–170. doi:10.1111/j.1752-1688.2005.tb03725.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.