150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Budyko-based past and future disaggregation of climate and catchment effects on streamflow changes

ORCID Icon & ORCID Icon
Pages 971-985 | Received 13 Jul 2023, Accepted 09 Apr 2024, Published online: 28 May 2024

References

  • Abhishek, and Kinouchi, T., 2021. Synergetic application of GRACE gravity data, global hydrological model, and in-situ observations to quantify water storage dynamics over Peninsular India during 2002–2017. Journal of Hydrology, 596, 126069. doi:10.1016/j.jhydrol.2021.126069.
  • Aghakouchak, A., et al., 2020. Climate extremes and compound hazards in a warming world. Annual Review of Earth and Planetary Sciences, 48 (1), 519–548. doi:10.1146/annurev-earth-071719-055228.
  • Biswal, B., 2016. Dynamic hydrologic modeling using the zero-parameter Budyko model with instantaneous dryness index. Geophysical Research Letters, 43 (18), 9696–9703. doi:10.1002/2016GL070173.
  • Blöschl, G., et al., 2019. Changing climate both increases and decreases European river floods. Nature, 573 (7772), 108–111. doi:10.1038/s41586-019-1495-6.
  • Budyko, M.I., 1974. Climate and life. New York: Academic press.
  • Chawla, I. and Mujumdar, P.P., 2015. Isolating the impacts of land use and climate change on streamflow. Hydrology and Earth System Sciences, 19 (8), 3633–3651. doi:10.5194/hess-19-3633-2015.
  • Choudhury, B.J., 1999. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216 (1–2), 99–110. doi:10.1016/S0022-1694(98)00293-5.
  • Dash, S.S., Sahoo, B., and Raghuwanshi, N.S., 2020. A novel embedded pothole module for Soil and Water Assessment Tool (SWAT) improving streamflow estimation in paddy-dominated catchments. Journal of Hydrology, 588, 125103. doi:10.1016/j.jhydrol.2020.125103
  • Dey, P. and Mishra, A., 2017. Separating the impacts of climate change and human activities on streamflow: a review of methodologies and critical assumptions. Journal of Hydrology, 548, 278–290. doi:10.1016/j.jhydrol.2017.03.014
  • Duan, Q., et al., 2006. Model Parameter Estimation Experiment (MOPEX): an overview of science strategy and major results from the second and third workshops. Journal of Hydrology, 320 (1–2), 3–17. doi:10.1016/j.jhydrol.2005.07.031.
  • Elsner, M.M., et al., 2010. Implications of 21st century climate change for the hydrology of Washington State. Climatic Change, 102, 225–260. doi:10.1007/s10584-010-9855-0.
  • Enayati, M., et al., 2021. Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. Journal of Water and Climate Change, 12 (2), 401–419. doi:10.2166/wcc.2020.261.
  • Eyring, V., et al., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9 (5), 1937–1958. doi:10.5194/gmd-9-1937-2016.
  • Falcone, J.A., 2011. GAGES-II: geospatial attributes of gages for evaluating streamflow. US Geological Survey. doi:10.3133/70046617.
  • Feng, X., Vico, G., and Porporato, A., 2012. On the effects of seasonality on soil water balance and plant growth. Water Resources Research, 48 (5), 1–12. doi:10.1029/2011WR011263.
  • Fowler, H.J., et al., 2021. Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth and Environment, 2 (2), 107–122. doi:10.1038/s43017-020-00128-6.
  • Fu, B., 1981. On the calculation of evaporation from land surface in mountainous areas (in Chinese). Scientia Atmospherica Sinica, 5, 23–31.
  • Gao, G., et al., 2016. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Science of the Total Environment, 557–558, 331–342. doi:10.1016/j.scitotenv.2016.03.019
  • Gao, F., et al., 2020. Long-term assessment of groundwater resources carrying capacity using GRACE data and Budyko model. Journal of Hydrology, 588, 125042. doi:10.1016/j.jhydrol.2020.125042.
  • Gilroy, K.L., and McCuen, R.H., 2012. A nonstationary flood frequency analysis method to adjust for future climate change and urbanization. Journal of Hydrology, 414, 40–48. doi:10.1016/j.jhydrol.2011.10.009.
  • GRDC. 2020. https://www.bafg.de/GRDC/EN/Home/homepage_node.html (last access: 15 Jan 2024).
  • Greve, P., et al., 2015. Introducing a probabilistic Budyko framework. Geophysical Research Letters, 42 (7), 2261–2269. doi:10.1002/2015GL063449.
  • Groisman, P.Y., et al., 2004. Contemporary changes of the hydrological cycle over the contiguous United States: trends derived from in situ observations. Journal of Hydrometeorology, 5 (1), 64–85. doi:10.1175/1525-7541(2004)005%3C0064:CCOTHC%3E2.0.CO;2.
  • Guan, X., et al., 2022. Quantifying the effects of climate and watershed structure changes on runoff variations in the Tao River basin by using three different methods under the Budyko framework. Theoretical and Applied Climatology, 1–14. doi:10.1007/s00704-021-03894-5.
  • Guo, A., et al., 2019. Uncertainty analysis of water availability assessment through the Budyko framework. Journal of Hydrology, 576, 396–407. doi:10.1016/j.jhydrol.2019.06.033
  • Hamlet, A.F., et al., 2013. An overview of the Columbia basin climate change scenarios project: approach, methods, and summary of key results. Atmosphere - Ocean, 51 (4), 392–415. doi:10.1080/07055900.2013.819555.
  • Hamlet, A.F., et al., 2010. Effects of projected climate change on energy supply and demand in the Pacific Northwest and Washington State. Climatic Change, 102 (1), 103–128. doi:10.1007/s10584-010-9857-y.
  • Hargreaves, G.H. and Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1 (2), 96–99. doi:10.13031/2013.26773.
  • Huang, M., Zhang, L., and Gallichand, J., 2003. Runoff responses to afforestation in a watershed of the Loess Plateau, China. Hydrological Processes, 17 (13), 2599–2609. doi:10.1002/hyp.1281.
  • Hurtt, G.C., et al., 2020. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 13 (11), 5425–5464. doi:10.5194/gmd-13-5425-2020.
  • Jiang, C., et al., 2015. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters. Journal of Hydrology, 522, 326–338. doi:10.1016/j.jhydrol.2014.12.060
  • Jin, Z., et al., 2017. Separating vegetation greening and climate change controls on evapotranspiration trend over the Loess Plateau. Scientific Reports, 7 (1), 1–15. doi:10.1038/s41598-017-08477-x.
  • Krakauer, N.Y. and Fung, I., 2008. Mapping and attribution of change in streamflow in the coterminous United States. Hydrology and Earth System Sciences, 12 (4), 1111–1120. doi:10.5194/hess-12-1111-2008.
  • Krysanova, V. and Srinivasan, R., 2015. Assessment of climate and land use change impacts with SWAT. Regional Environmental Change, 15 (3), 431–434. doi:10.1007/s10113-014-0742-5.
  • Lehmann, F., et al., 2022. How well are we able to close the water budget at the global scale?. Hydrology and Earth System Sciences, 26 (1), 35–54. doi:10.5194/hess-26-35-2022.
  • Li, D., et al., 2013. Vegetation control on water and energy balance within the Budyko framework. Water Resources Research, 49 (2), 969–976. doi:10.1002/wrcr.20107.
  • Liang, W., et al., 2015a. A study on the streamflow change and its relationship with climate change and ecological restoration measures in a sediment concentrated region in the Loess Plateau, China. Water Resources Management, 29 (11), 4045–4060. doi:10.1007/s11269-015-1044-5.
  • Liang, W., et al., 2015b. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resources Research, 51 (8), 6500–6519. doi:10.1002/2014WR016589.
  • Liu, S., et al., 2004. The effects of bushfires on hydrological processes using a paired-catchment analysis. Meteorology and Atmospheric Physics, 86 (1–2), 31–44. doi:10.1007/s00703-003-0614-x.
  • McCabe, G.J. and Wolock, D.M., 2002. A step increase in streamflow in the conterminous United States. Geophysical Research Letters, 29 (24), 8–11. doi:10.1029/2002GL015999.
  • Milly, P.C.D., 1994. Climate, soil water storage, and the average water balance. Water Resources Research. doi:10.1029/94WR00586.
  • Milly, P.C., et al., 2008. Stationarity is dead: whither water management?. Science, 319 (5863), 573–574. doi:10.1126/science.1151915.
  • Mondal, A. and Mujumdar, P.P., 2016. Detection of change in flood return levels under global warming. Journal of Hydrologic Engineering, 21 (8), 1–12. doi:10.1061/(ASCE)HE.1943-5584.0001326.
  • Mwangi, H.M., et al., 2016. Relative contribution of land use change and climate variability on discharge of upper Mara River, Kenya. Journal of Hydrology: Regional Studies, 5, 244–260. doi:10.1016/j.ejrh.2015.12.059
  • Ol’Dekop, E., 1911. On evaporation from the surface of river basins. Transactions on meteorological observations, Lur-evskogo. Report, Univ. of Tartu, Tartu, Estonia (in Russian).
  • Padrón, R.S., et al., 2017. Large-scale controls of the surface water balance over land: insights from a systematic review and meta-analysis. Water Resources Research, 53 (11), 9659–9678. doi:10.1002/2017WR021215.
  • Patterson, L.A., Lutz, B., and Doyle, M.W., 2013. Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resources Research, 49 (11), 7278–7291. doi:10.1002/2013WR014618.
  • Pettitt, A.N., 1979. A non-parametric approach to the change-point problem. Applied Statistics, 28 (2), 126–135. doi:10.2307/2346729.
  • Pike, J.G., 1964. The estimation of annual run-off from meteorological data in a tropical climate. Journal of Hydrology, 2 (2), 116–123. doi:10.1016/0022-1694(64)90022-8.
  • Popp, A., et al., 2017. Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42, 331–345. doi:10.1016/j.gloenvcha.2016.10.002
  • Potter, N.J., et al., 2005. Effects of rainfall seasonality and soil moisture capacity on mean annual water balance for Australian catchments. Water Resources Research, 41 (6), 1–11. doi:10.1029/2004WR003697.
  • Reaver, N.G.F., et al., 2022. Theoretical and empirical evidence against the Budyko catchment trajectory conjecture. Hydrology and Earth System Sciences, 26 (5), 1507–1525. doi:10.5194/hess-26-1507-2022.
  • Roderick, M.L. and Farquhar, G.D., 2011. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resources Research, 47 (6), 1–11. doi:10.1029/2010WR009826.
  • Sachindra, D.A., et al., 2013. Least square support vector and multi-linear regression for statistically downscaling general circulation model outputs to catchment streamflows. International. Journal of Climatology, 33 (5), 1087–1106.
  • Sadri, S., et al., 2016. Nonstationarity of low flows and their timing in the eastern United States. Hydrology and Earth System Sciences, 20 (2), 633–649. doi:10.5194/hess-20-633-2016.
  • Sankarasubramanian, A., Vogel, R.M., and Limbrunner, J.F., 2001. Climate elasticity of streamflow in the United States. Water Resources Research, 37 (6), 1771–1781. doi:10.1029/2000WR900330.
  • Schreiber, P., 1904. Uber die Beziehungen zwischen dem Niederschlag und der Wasserfu hrung der Flu sse in Mitteleuropa. Meteorol Z, 21 (10), 441–452.
  • Sharma, P. and Mondal, A., 2022. Probabilistic Budyko-based separation of climate and catchment effects on streamflow. Journal of Hydrology, 608, 127665. doi:10.1016/j.jhydrol.2022.127665
  • Singh, R. and Kumar, R., 2015. Vulnerability of water availability in India due to climate change: a bottom-up probabilistic Budyko analysis. Geophysical Research Letters, 42 (22), 9799–9807. doi:10.1002/2015GL066363.
  • Sinha, J., et al., 2018. Assessment of the impacts of climatic variability and anthropogenic stress on hydrologic resilience to warming shifts in Peninsular India. Scientific Reports, 8 (1), 13833. doi:10.1038/s41598-018-32091-0.
  • Sinha, J., Jha, S., and Goyal, M.K., 2019. Influences of watershed characteristics on long-term annual and intra-annual water balances over India. Journal of Hydrology, 577, 123970. doi:10.1016/j.jhydrol.2019.123970
  • Sivapalan, M., and Samuel, J.M., 2009. Transcending limitations of stationarity and the return period: process-based approach to flood estimation and risk assessment. Hydrological processes, 23 (11), 1671–1675. doi:10.1002/hyp.7292”10.1002/hyp.7292.
  • Small, D., Islam, S., and Vogel, R.M., 2006. Trends in precipitation and streamflow in the eastern U.S.: paradox or perception? Geophysical Research Letters, 33 (3), 2–5. doi:10.1029/2005GL024995.
  • Tamm, O., et al., 2018. Modelling the effects of land use and climate change on the water resources in the eastern Baltic Sea region using the SWAT model. Catena, 167, 78–89. doi:10.1016/j.catena.2018.04.029
  • Turc, L., 1954. Le bilan d’eau des sols. Relation entre la pr´ecipitation, l’´evaporation et l’´ecoulement. Annals of Anatomy, 5, 491–569.
  • Vano, J.A., et al., 2010. Climate change impacts on water management and irrigated agriculture in the Yakima River Basin, Washington, USA. Climatic Change, Vol. 102, pp. 287–317. doi: 10.1007/s10584-010-9856-z.
  • Vishwakarma, B.D., et al., 2018. What is the spatial resolution of GRACE satellite products for hydrology?. Remote Sensing, 10 (6), 852. doi:10.3390/rs10060852.
  • Vora, A. and Singh, R., 2021. Satellite based Budyko framework reveals the human imprint on long-term surface water partitioning across India. Journal of Hydrology, 602, 126770. doi:10.1016/j.jhydrol.2021.126770
  • Wang, D., et al., 2015. A thermodynamic interpretation of Budyko and L’vovich formulations of annual water balance: proportionality hypothesis and maximum entropy production. Water Resources Research, 51 (4), 3007–3016. doi:10.1002/2014WR016857.
  • Wang, T., et al., 2018. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the budyko framework. Journal of Hydrology, 558, 301–313. doi:10.1016/j.jhydrol.2018.01.050.
  • Wang, D. and Hejazi, M., 2011. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resources Research, 47 (10). doi:10.1029/2010WR010283.
  • Wang, D. and Tang, Y., 2014. A one-parameter Budyko model for water balance captures emergent behavior in darwinian hydrologic models. Geophysical Research Letters, 41 (13), 4569–4577. doi:10.1002/2014GL060509.
  • Williams, C.A., et al., 2012. Climate and vegetation controls on the surface water balance: synthesis of evapotranspiration measured across a global network of flux towers. Water Resources Research, 48 (6), 1–13. doi:10.1029/2011WR011586.
  • Wright, D.B., Bosma, C.D., and Lopez-Cantu, T., 2019. U.S. hydrologic design standards insufficient due to large increases in frequency of rainfall extremes. Geophysical Research Letters, 46 (14), 8144–8153. doi:10.1029/2019GL083235.
  • Xing, W., et al., 2018. Identification of dominant interactions between climatic seasonality, catchment characteristics and agricultural activities on Budyko-type equation parameter estimation. Journal of Hydrology, 556, 585–599. doi:10.1016/j.jhydrol.2017.11.048
  • Xiong, J., et al., 2022. Annual runoff coefficient variation in a changing environment: a global perspective. Environmental Research Letters, 17 (6), 064006. 10.1088/1748-9326/ac62ad.
  • Xu, X., et al., 2013. Relative importance of climate and land surface changes on hydrologic changes in the US Midwest since the 1930s: implications for biofuel production. Journal of Hydrology, 497, 110–120. doi:10.1016/j.jhydrol.2013.05.041
  • Xu, X., et al., 2014. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. Journal of Hydrology, 510, 530–540. doi:10.1016/j.jhydrol.2013.12.052
  • Yang, D., et al., 2007. Analyzing spatial and temporal variability of annual water-energy balance in nonhumid regions of China using the Budyko hypothesis. Water Resources Research, 43 (4), 1–12. doi:10.1029/2006WR005224.
  • Yang, D., et al., 2009. Impact of vegetation coverage on regional water balance in the nonhumid regions of China. Water Resources Research, 45 (7), 1–13. doi:10.1029/2008WR006948.
  • Yang, H., et al., 2008. New analytical derivation of the mean annual water-energy balance equation. Water Resources Research, 44 (3), 1–9. doi:10.1029/2007WR006135.
  • Yang, P., et al., 2018. Reconstruction of terrestrial water storage anomalies in Northwest China during 1948–2002 using GRACE and GLDAS products. Hydrology Research, 49 (5), 1594–1607. doi:10.2166/nh.2018.074.
  • Yang, H., Yang, D., and Hu, Q., 2014. An error analysis of the Budyko hypothesis for assessing the contribution of climate change to runoff. Water Resources Research, 50 (12), 9620–9629. doi:10.1002/2014WR015451.
  • Yokoo, Y., Sivapalan, M., and Oki, T., 2008. Investigating the roles of climate seasonality and landscape characteristics on mean annual and monthly water balances. Journal of Hydrology, 357 (3–4), 255–269. doi:10.1016/j.jhydrol.2008.05.010.
  • Zhang, L., et al., 2004. A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40 (2), W025021–W02502114. doi:10.1029/2003WR002710.
  • Zhang, X., et al., 2008. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resources Research, 45 (7), 1–12. doi:10.1029/2007WR006711.
  • Zhang, L., Dawes, W.R., and Walker, G.R., 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37 (3), 701–708. doi:10.1029/2000WR900325.
  • Zhao, F., et al., 2010. Evaluation of methods for estimating the effects of vegetation change and climate variability on streamflow. Water Resources Research, 46 (3). doi:10.1029/2009WR007702.
  • Zhao, G., et al., 2014. Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River basin, China. Journal of Hydrology, 519 (PA), 387–398. doi:10.1016/j.jhydrol.2014.07.014.
  • Zheng, H., et al., 2009. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resources Research, 45 (7), 1–9. doi:10.1029/2007WR006665.
  • Zhong, Y., et al., 2023. Reinterpreting global GRACE trends based on Century-Long GRACE-REC data. Water Resources Research, 59(12), e2023WR035817. doi:10.1029/2023WR035817.
  • Zipper, S.C., et al., 2018. Continuous separation of land use and climate effects on the past and future water balance. Journal of Hydrology, 565, 106–122. doi:10.1016/j.jhydrol.2018.08.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.