62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spatially heterogeneous discharge of glacial meltwater to drainages surrounding the ablating Coropuna ice cap, Peruvian Andes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1113-1129 | Received 07 Jul 2023, Accepted 17 Apr 2024, Published online: 05 Jun 2024

References

  • Alvarez Masias, P.J., 2018. Características químicas e isotópicas del sistema hidrotermal del complejo volcánico nevado Coropuna, Arequipa-Perú. Arequipa, Peru: Universidad Nacional de San Agustín de Arequipa.
  • Autoridad Nacional del Agua (ANA), (2023) Nosotros. Available from: https://www.ana.gob.pe/nosotros/la-autoridad/nosotros [Accessed 12 Nov2023].
  • Baraer, M., et al. 2009. Characterizing contributions of glacier melt and groundwater during the dry season in a poorly gauged catchment of the Cordillera Blanca (Peru). Advances in Geoscience, 22, 41–49. doi:10.5194/adgeo-22-41-2009
  • Baraer, M., et al. 2015. Contribution of groundwater to the outflow from ungauged glacierized catchments: a multi-site study in the tropical Cordillera Blanca, Peru. Hydrological Processes, 29, 1–21. doi:10.1002/hyp.10386.
  • Barnett, T.P., Adam, J.C., and Lettenmaier, D.P., 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438 (7066), 303–309. doi:10.1038/nature04141.
  • Barthold, F.K., et al. 2010. Identification of geographic runoff sources in a data sparse region: hydrological processes and the limitations of tracer‐based approaches. Hydrological Processes, 24 (16), 2313–2327. doi:10.1002/hyp.7678.
  • Beaucaire, C. and Michard, G., 1982. Origin of dissolved minor elements (Li, Rb, Sr, Ba) in superficial waters in a Granitic Area. Geochemical Journal, 16 (5), 247–258. doi:10.2343/geochemj.16.247.
  • Beniston, M., 2003. Global environmental change in mountain regions : an overview. Climatic Change, 59 (1/2), 5–31. doi:10.5194/gh-54-120-1999.
  • Biddau, R., et al. 2017. Assessing background values of chloride, sulfate and fluoride in groundwater_ A geochemical-statistical approach at a regional scale. Journal of Geochemical Exploration, 181, 243–255. doi:10.1016/j.gexplo.2017.08.002
  • Birkos, E. (2009) Controls on Stable Oxygen Isotope Concentrations in Coropuna and Quelccaya Peruvian Ice Cores Over the Last 200 Years ( Masters Thesis). The Ohio State University.
  • Boyd, E.S., et al. 2014. Chemolithotrophic primary production in a subglacial ecosystem. (J. E. Kostka, Ed.). Applied and Environmental Microbiology, 80 (19), 6146–6153. doi:10.1128/AEM.01956-14.
  • Bromley, G.R.M., et al. 2011. Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science, 26 (1), 37–43. doi:10.1002/jqs.1424.
  • Bromley, G.R.M., et al. 2019. In situ cosmogenic 3He and 36Cl and radiocarbon dating of volcanic deposits refine the Pleistocene and Holocene eruption chronology of SW Peru. Bulletin of Volcanology 81, 1–16. doi:10.1007/s00445-019-1325-6.
  • Bromley, G.R., et al. 2009. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes. Quaternary Science Reviews, 28 (23–24), 2514–2526.
  • Burns, R., et al. 2018. Direct isotopic evidence of biogenic methane production and efflux from beneath a temperate glacier. Scientific Reports, 8 (1), 17118. doi:10.1038/s41598-018-35253-2.
  • Cartwright, I., et al. 2017. A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: possibilities, challenges, and limitations. Journal of Hydrology, 555, 797–811. doi:10.1016/j.jhydrol.2017.10.053
  • Cartwright, I., et al. 2020. A review of the use of radiocarbon to estimate groundwater residence times in semi-arid and arid areas. Journal of Hydrology, 580, 124247. doi:10.1016/j.jhydrol.2019.124247
  • Chen, J.S. and Wang, C., 2009. Rising springs along the Silk Road. Geology, 37 (3), 243–246. doi:10.1130/G25472A.1.
  • Christophersen, N., et al. 1990. Modelling streamwater chemistry as a mixture of soilwater end-members — a step towards second-generation acidification models. Journal of Hydrology, 116 (1–4), 307–320. doi:10.1016/0022-1694(90)90130-P.
  • Clark, I., 2015. Groundwater geochemistry and isotopes. Boca Raton, FL: CRC press.
  • Dornbusch, U., 1998. Current Large-Scale Climatic Conditions in Southern Peru and Their Influence on Snowline Altitudes (Gegenwärtige großräumige klimatische Bedingungen in Südperu und ihr Einfluß auf die Höhenlage der Schneegrenze). Erdkunde, 52 (1), 41–54. doi:10.3112/erdkunde.1998.01.04.
  • Eichinger, L., 1983. A contribution to the interpretation of 14C groundwater ages considering the example of a partially confined sandstone aquifer. Radiocarbon, 25 (2), 347–356. Cambridge University Press. doi:10.1017/S0033822200005634.
  • Fellman, J.B., et al. 2015. Evidence for the assimilation of ancient glacier organic carbon in a proglacial stream food web: assimilation of glacier organic carbon. Limnology and Oceanography, 60 (4), 1118–1128. doi:10.1002/lno.10088.
  • Fontes, J.-C. and Garnier, J.-M., 1979. Determination of the initial 14C activity of the total dissolved carbon: a review of the existing models and a new approach. Water Resources Research, 15 (2), 399–413. Wiley Online Library. doi:10.1029/WR015i002p00399.
  • Gałaś, A., Majka, J., and Włodek, A., 2021. Origin of andradite in the quaternary volcanic andahua group, Central Volcanic Zone, Peruvian Andes. Mineralogy and Petrology, 115 (3), 257–269. doi:10.1007/s00710-021-00744-0.
  • Garreaud, R., Vuille, M., and Clement, A.C., 2003. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194 (1–3), 5–22. doi:10.1016/S0031-0182(03)00269-4.
  • Gat, J.R. and Airey, P.L., 2006. Stable water isotopes in the atmosphere/biosphere/lithosphere interface: scaling-up from the local to continental scale, under humid and dry conditions. Global and Planetary Change, 51 (1–2), 25–33. doi:10.1016/j.gloplacha.2005.12.004.
  • Gordon, R.P., et al. 2015. Sources and pathways of stream generation in tropical proglacial valleys of the Cordillera Blanca, Peru. Journal of Hydrology, 522 (C), 628–644. doi:10.1016/j.jhydrol.2015.01.013.
  • Guido, Z., et al. 2016. Seasonal glacial meltwater contributions to surface water in the Bolivian Andes: a case study using environmental tracers. Journal of Hydrology: Regional Studies, 8, 260–273. doi:10.1016/j.ejrh.2016.10.002
  • Gutierrez, S.C., et al. 2021. Seasonal variability of daily evapotranspiration and energy fluxes in the Central Andes of Peru using eddy covariance techniques and empirical methods. Atmospheric Research, 261, 105760.
  • Hågvar, S., Ohlson, M., and Brittain, J.E., 2016. A melting glacier feeds aquatic and terrestrial invertebrates with ancient carbon and supports early succession. Arctic, Antarctic, and Alpine Research, 48 (3), 551–562. doi:10.1657/AAAR0016-027.
  • Han, L.F. and Plummer, L.N., 2016. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater. Earth-Science Reviews, 152 (C), 119–142. doi:10.1016/j.earscirev.2015.11.004.
  • Han, L.-F., Plummer, L.N., and Aggarwal, P., 2012. A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating. Chemical Geology, 318–319(C), 88–112. doi:10.1016/j.chemgeo.2012.05.004
  • Hanshaw, M.N. and Bookhagen, B., 2014. Glacial areas, lake areas, and snow lines from 1975 to 2012: status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. The Cryosphere, 8 (2), 359–376. doi:10.5194/tc-8-359-2014.
  • Herreros, J., et al. 2009. Environmental records from temperate glacier ice on Nevado Coropuna saddle, southern Peru. Advances Geosciences, 22, 27–34. doi:10.5194/adgeo-22-27-2009
  • Hood, E., et al. 2015. Storage and release of organic carbon from glaciers and ice sheets. Nature Geoscience, 8 (2), 91–96. doi:10.1038/ngeo2331.
  • Hooper, R.P., 2003. Diagnostic tools for mixing models of stream water chemistry. Water Resources Research, 39 (3), 1055–1068. doi:10.1029/2002WR001528.
  • Huang, T. and Pang, Z., 2012. The role of deuterium excess in determining the water salinisation mechanism: a case study of the arid Tarim River Basin, NW China. Applied Geochemistry, 27 (12), 2382–2388. doi:10.1016/j.apgeochem.2012.08.015.
  • Huss, M., et al. 2017. Toward mountains without permanent snow and ice. Earth’s Future, 5 (5), 418–435. doi:10.1002/eft2.207.
  • Ingebritsen, S.E., Sherrod, D.R., and Mariner, R.H., 1992. Rates and patterns of groundwater flow in the Cascade Range Volcanic Arc, and the effect on subsurface temperatures. Journal of Geophysical Research: Solid Earth, 97 (B4), 4599. doi:10.1029/91JB03064.
  • Ingerson, E. and Pearson, F., 1964. Estimation of age and rate of motion of groundwater by the 14C-method. Recent researches in the fields of atmosphere, hydrosphere and nuclear geochemistry. 263–283.
  • Jefferson, A., Grant, G., and Rose, T., 2006. Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades: volcanic history influences groundwater. Water Resources Research, 42 (12). doi:10.1029/2005WR004812.
  • Kaser, G., 1999. A review of the modern fluctuations of tropical glaciers. Journal of Hydrology, 22, 93–103. doi:10.1016/S0921-8181(99)00028-4
  • Kaser, G., 2001. Glacier-climate interaction at low latitudes. Journal of Glaciology, 47 (157), 195–204. doi:10.3189/172756501781832296.
  • Kaser, G., et al. 2003. The impact of glaciers on the runoff and the reconstruction of mass balance history from hydrological data in the tropical Cordillera Blanca, Perú. Journal of Hydrology, 282 (1–4), 130–144. doi:10.1016/S0022-1694(03)00259-2.
  • Kaser, G., Grosshauser, M., and Marzeion, B., 2010. Contribution potential of glaciers to water availability in different climate regimes. Proceedings of the National Academy of Sciences, 107 (47), 20223–20227. doi:10.1073/pnas.1008162107.
  • Klaus, J. and McDonnell, J.J., 2013. Hydrograph separation using stable isotopes: review and evaluation. Journal of Hydrology, 505 (C), 47–64. doi:10.1016/j.jhydrol.2013.09.006.
  • Kochtitzky, W.H., et al. 2018. Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru. Journal of Glaciology, 64 (244), 175–184. doi:10.1017/jog.2018.2.
  • Lacelle, D., 2007. Environmental setting, (micro)morphologies and stable C–O isotope composition of cold climate carbonate precipitates—a review and evaluation of their potential as paleoclimatic proxies. Quaternary Science Reviews, 26 (11–12), 1670–1689. doi:10.1016/j.quascirev.2007.03.011.
  • Liljedahl, A.K., et al. 2017. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophysical Research Letters, 44 (13), 6876–6885. doi:10.1002/2017GL073834.
  • Lima Moraes, A.G.D., et al. 2019 December. Arequipa Climate Maps. Indiana, USA: Normals. doi:10.4231/490D-HC66.
  • Liu, F., Williams, M.W., and Caine, N., 2004. Source waters and flow paths in an alpine catchment, Colorado Front Range, United States. Water Resources Research, 40 (9), 61. doi:10.1029/2004WR003076.
  • Margirier, A., et al. 2015. Tectonic and climatic controls on the Chuquibamba landslide (western Andes, southern Peru). Earth Surface Dynamics, 3 (2), 281–289. doi:10.5194/esurf-3-281-2015.
  • Mark, B.G., McKenzie, J.M., and Gomez, J., 2005. Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: callejon de Huaylas, Peru. Hydrological Sciences Journal, 50 (6), 975–989. doi:10.1623/hysj.2005.50.6.975.
  • Mark, B.G. and Seltzer, G.O., 2003. Tropical glacier meltwater contribution to stream discharge: a case study in the Cordillera Blanca, Peru. Journal of Glaciology, 49 (165), 271–281. doi:10.3189/172756503781830746.
  • Mckenzie, J.M., et al. 2010. A hydrogeochemical survey of Kilimanjaro (Tanzania): implications for water sources and ages. Hydrogeology Journal, 18 (4), 985–995. doi:10.1007/s10040-009-0558-4.
  • Meng, Y., Liu, G., and Li, M. 2015. Tracing the sources and processes of groundwater in an alpine glacierized region in southwest china: evidence from environmental isotopes. Water, 7 (6), 2673–2690.
  • Merino, M.V., et al. 2019. Archetypes of climate vulnerability: a mixed- method approach applied in the Peruvian Andes. Climate and Development, 1–17. doi:10.1080/17565529.2018.1442804.
  • Miller, J.B., et al. 2021. Recharge from glacial meltwater is critical for alpine springs and their microbiomes. Environmental Research Letters, 16 (6), 064012. doi:10.1088/1748-9326/abf06b.
  • Milton, E.B.P., et al. 2022. Examining surface water δ18O and δ2H values in the western Central Andes: a watershed moment for anthropological mobility studies. Journal of Archaeological Science, 146, 105655. doi:10.1016/j.jas.2022.105655
  • Olson, E., 2024. Coropuna_hydrostudy_data. Mendeley Data. V1. doi:10.17632/cwv22bcpyr.1.
  • Osterberg, E.C., et al. 2006. Continuous ice core melter system with discrete sampling for major Ion, Trace Element, and Stable Isotope Analyses. Environmental Science & Technology, 40 (10), 3355–3361. doi:10.1021/es052536w.
  • Pabón-Caicedo, J.D., et al. 2020. Observed and projected hydroclimate changes in the Andes. Frontiers in Earth Science, 8, 61. doi:10.3389/feart.2020.00061.
  • Quispesivana Quispe, L., and Colque, N. 2003. Revisión y Actualización de los Cuadrángulos de Caravelí, Chuquibamba, Chivay, Cailloma, Velille, Livitaca y Pacapausa. Instituto Geológico minero y metalúrgico, INGEMMET.
  • Racoviteanu, A.E., et al. 2007. Evaluating digital elevation models for glaciologic applications: an example from Nevado Coropuna, Peruvian Andes. Global and Planetary Change, 59 (1–4), 110–125. doi:10.1016/j.gloplacha.2006.11.036.
  • R Core Team, 2019. R: a language and environment for statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Schmieder, J., et al. 2018. Spatio‐temporal tracer variability in the glacier melt end‐member — how does it affect hydrograph separation results? Hydrological Processes, 32 (12), 1828–1843. doi:10.1002/hyp.11628.
  • Silverio, W. and Jaquet, J.-M., 2012. Multi-temporal and multi-source cartography of the glacial cover of Nevado Coropuna (Arequipa, Peru) between 1955 and 2003. International Journal of Remote Sensing, 33 (18), 5876–5888. doi:10.1080/01431161.2012.676742.
  • Somers, L.D., et al. 2019. Groundwater buffers decreasing glacier melt in an andean watershed—but not forever. Geophysical Research Letters, 46 (22), 13016–13026. doi:10.1029/2019GL084730.
  • Stubbins, A., et al. 2012. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nature Geoscience, 5 (3), 198–201. doi:10.1038/ngeo1403.
  • Tamers, M., 1975. Validity of radiocarbon dates on ground water. Geophysical Surveys, 2 (2), 217–239. Springer. doi:10.1007/BF01447909.
  • Thouret, J.C., et al. 2016. A 25 myr chronostratigraphy of ignimbrites in south Peru: implications for the volcanic history of the Central Andes. Journal of the Geological Society, 173 (5), 734–756. doi:10.6084/m9.figshare.c.3147100.
  • USEPA, 1994. Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. In: Methods for the determination of metals in environmental Samples. Washington, DC: Elsevier, 31–87. doi:10.1016/B978-0-8155-1398-8.50010-0.
  • Veettil, and Kamp, 2019. Global disappearance of tropical mountain glaciers: observations, causes, and challenges. Geosciences, 9 (5), 196. doi:10.3390/geosciences9050196.
  • Veettil, B.K. and Souza, S.F.D., 2016. Study of 40-year glacier retreat in the northern region of the Cordillera Vilcanota, Peru, using satellite images: preliminary results. Remote Sensing Letters, 8 (1), 78–85. doi:10.1080/2150704X.2016.1235811.
  • Venturelli, G., et al. 1978. Trace element distribution in the cainozoic lavas of nevado coropuna and andagua valley, central andes of Southern Peru. Bulletin Volcanologique, 41 (3), 213–228. doi:10.1007/BF02597224.
  • Vincent, A. and Hart, J. (2017) Under the glacier, the groundwater - the case of Skálafell area, Iceland. EGU General Assembly Conference Abstracts EGU General Assembly Conference Abstracts, Vienna, Austria, 2322.
  • Vincent, A., Violette, S., and Aðalgeirsdóttir, G., 2019. Groundwater in catchments headed by temperate glaciers A review. Earth-Science Reviews, 188, 59–76. doi:10.1016/j.earscirev.2018.10.017
  • Vuille, M., et al. 2008. Climate change and tropical Andean glaciers: past, present and future. Earth-Science Reviews, 89 (3–4), 1–18. doi:10.1016/j.earscirev.2008.04.002.
  • Vuille, M., et al. 2018. Rapid decline of snow and ice in the tropical Andes – impacts, uncertainties and challenges ahead. Earth-Science Reviews, 176, 195–213. doi:10.1016/j.earscirev.2017.09.019.
  • Wagnon, P., et al. 1999. Energy balance and runoff seasonality of a Bolivian glacier. Global and Planetary Change, 22 (1–4), 49–58. doi:10.1016/S0921-8181(99)00025-9.
  • Weibel, M., Frangipane-Gysel, M., and Hunziker, J., 1978. Ein Beitrag zur Vulkanologie Süd-Perus. Geologische Rundschau, 67 (1), 243–252. doi:10.1007/BF01803264.
  • Yuan, G., et al. 2019. A review of feldspar alteration and its geological significance in sedimentary basins: from shallow aquifers to deep hydrocarbon reservoirs. Earth-Science Reviews, 191, 114–140. doi:10.1016/j.earscirev.2019.02.004.
  • Zeng, N., 2003. Glacial-interglacial atmospheric CO2 change —the glacial burial hypothesis. Advances in Atmospheric Sciences, 20 (5), 677–693. doi:10.1007/BF02915395.
  • Zhu, L., et al. 2018. Spatiotemporal distribution of river water stable isotope compositions and variability of lapse rate in the central Rocky Mountains: controlling factors and implications for paleoelevation reconstruction. Earth and Planetary Science Letters, 496, 215–226. doi:10.1016/j.epsl.2018.05.047
  • Zuecco, G., et al. 2019. Understanding hydrological processes in glacierized catchments: evidence and implications of highly variable isotopic and electrical conductivity data. Hydrological Processes, 33 (5), 816–832. doi:10.1002/hyp.13366

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.