73
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spatial variability of rainfall: deciphering flood characteristics and model precision

ORCID Icon & ORCID Icon
Pages 1317-1334 | Received 26 Nov 2023, Accepted 06 Jun 2024, Published online: 24 Jul 2024

References

  • Akay, H., Baduna Koçyiğit, M., and Yanmaz, A.M., 2018. Effect of using multiple stream gauging stations on calibration of hydrologic parameters and estimation of hydrograph of ungauged neighboring basin. Arabian Journal of Geosciences, 11 (11). doi:10.1007/s12517-018-3642-z.
  • Arnaud, P., et al., 2002. Influence of rainfall spatial variability on flood prediction. Journal of Hydrology, 260 (1–4), 216–230. doi:10.1016/S0022-1694(01)00611-4.
  • Awol, F.S., Coulibaly, P., and Tolson, B.A., 2018. Event-based model calibration approaches for selecting representative distributed parameters in semi-urban watersheds. Advances in Water Resources, 118, 12–27. doi:10.1016/j.advwatres.2018.05.013.
  • Azizi, S., Ilderomi, A.R., and Noori, H., 2021. Investigating the effects of land use change on flood hydrograph using HEC-HMS hydrologic model (case study: Ekbatan Dam). Natural Hazards, 109 (1), 145–160. doi:10.1007/s11069-021-04830-6.
  • Boelee, L., et al., 2017. A review of the understanding of uncertainty in a flood forecasting system and the available methods of dealing with it. In: E-proceedings of the 37th IAHR World Congress, 13–18 August 2017. Kuala Lumpur, Malaysia. Available from: http://eprints.hrwallingford.co.uk/1409/.
  • Chaubey, I., et al., 1999. Quantifying model output uncertainty due to spatial variability of rainfall 1. Journal of the American Water Resources Association, 35 (5), 1113–1123. doi:10.1111/j.1752-1688.1999.tb04198.x.
  • Courty, L.G., Rico-Ramirez, M.Á., and Pedrozo-Acuña, A., 2018. The significance of the spatial variability of rainfall on the numerical simulation of urban floods. Water, 10 (2), 207. doi:10.3390/w10020207.
  • Dasari, I. and Vema, V.K., 2023. Assessment of the structural uncertainty of hydrological models and its impact on flood inundation mapping. Hydrological Sciences Journal, 1–18. doi:10.1080/02626667.2023.2271456.
  • Devia, G.K., Ganasri, B.P., and Dwarakish, G.S., 2015. A review on hydrological models. Aquatic Procedia, 4, 1001–1007. doi:10.1016/j.aqpro.2015.02.126.
  • Emmanuel, I., et al., 2015. Influence of rainfall spatial variability on rainfall-runoff modelling: benefit of a simulation approach? Journal of Hydrology, 531, 337–348. doi:10.1016/j.jhydrol.2015.04.058.
  • Emmanuel, I., et al., 2017. A method for assessing the influence of rainfall spatial variability on hydrograph modeling. First case study in the Cevennes Region, southern France. Journal of Hydrology, 555, 314–322. doi:10.1016/j.jhydrol.2017.10.011.
  • Feldman, 2000. Hydrologic modeling system HEC-HMS technical reference manual CPD-74B.
  • Fernando, R., et al., 2021. Development of flood inundation maps as an initial assessment for flood disaster mitigation - a case study of selagan river basin. In IOP Conference Series: Earth and Environmental Science, Indonesia. doi:10.1088/1755-1315/708/1/012030.
  • Fleischmann, A., Paiva, R., and Collischonn, W., 2019. Can regional to continental river hydrodynamic models be locally relevant? A cross-scale comparison. Journal of Hydrology X, 3, 100027. doi:10.1016/j.hydroa.2019.100027.
  • Franco, A.C.L., de Oliveira, D.Y., and Bonumá, N.B., 2020. Comparison of single-site, multi-site and multi-variable SWAT calibration strategies. Hydrological Sciences Journal, 65 (14), 2376–2389. doi:10.1080/02626667.2020.1810252.
  • Ghosh, S. and Kondapalli, S., 2017. Development of flood hazard maps for India. In 17th ESRI India User Conference, Delhi.
  • Giani, G., Rico-Ramirez, M.A., and Woods, R.A., 2022. Are moments of rainfall spatial variability useful for runoff modelling in operational hydrology? Hydrological Sciences Journal, 67 (10), 1466–1479. doi:10.1080/02626667.2022.2092405.
  • Huang, S., et al., 2020. Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins. Climatic Change, 163 (3), 1143–1164. doi:10.1007/s10584-020-02872-6.
  • Jain, S.K., et al., 2018. A Brief review of flood forecasting techniques and their applications. International Journal of River Basin Management, 16 (3), 329–344. doi:10.1080/15715124.2017.1411920.
  • Kalimisetty, S., et al., 2021. 1D and 2D model coupling approach for the development of operational spatial flood early warning system. Geocarto International, 1–16. doi:10.1080/10106049.2021.1886335.
  • Kim, C. and Kim, D.H., 2020. Effects of rainfall spatial distribution on the relationship between rainfall spatiotemporal resolution and runoff prediction accuracy. Water (Switzerland), 12 (3). doi:10.3390/w12030846.
  • Kim, T.K., 2015. Statistic and probability. Korean Journal of Anesthesiology, 68 (6), 540–546. doi:10.4097/kjae.2015.68.6.540.
  • Kneib, T., Silbersdorff, A., and Säfken, B., 2021. Rage against the mean – a review of distributional regression approaches. Econometrics and Statistics, 26, 99–123. doi:10.1016/j.ecosta.2021.07.006.
  • Kurian, C., et al., 2020. Effective flood forecasting at higher lead times through hybrid modelling framework. Journal of Hydrology, 587, 124945. doi:10.1016/j.jhydrol.2020.124945.
  • Liu, Z., Zhang, H., and Liang, Q., 2019. A coupled hydrological and hydrodynamic model for flood simulation. Hydrology Research, 50 (2), 589–606. doi:10.2166/nh.2018.090.
  • Ma, H., Dong, X., and Chang, W., 2018. Application of synthetic unit hydrograph on HEC-HMS model for flood forecasting. MATEC Web of Conferences, 246, 1076. doi:10.1051/matecconf/201824601076.
  • Makumbura, R.K., et al., 2022. Comparison of calibration approaches of the Soil and Water Assessment Tool (SWAT) model in a tropical watershed. Hydrology, 9 (10), 183. doi:10.3390/hydrology9100183.
  • Nadeem, M.U., et al., 2022. Application of HEC-HMS for flood forecasting in hazara catchment Pakistan, South Asia. International Journal of Hydrology, 6 (1), 7–12. doi:10.15406/ijh.2022.06.00296.
  • Nath Kalita, D., 2008. A study of basin response using HEC-HMS and subzone reports of CWC. In: 13th National Symposiym on Hydrology with Focal Theme on Infow Forecasting During Extremes, 28–29 August 2008.New Delhi, India. doi:10.13140/2.1.1470.2724.
  • Okiria, E., et al., 2022. A comparative evaluation of lumped and semi-distributed conceptual hydrological models: does model complexity enhance hydrograph prediction? Hydrology, 9 (5), 89. doi:10.3390/hydrology9050089.
  • Pai, D.S., et al., 2014. Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. MAUSAM, 65 (1), 1–18. doi:10.54302/mausam.v65i1.851.
  • Patel, M.M., Gandhi, H.M., and Shrimali, N.J., 2014. Literature study on application of HEC-HMS for event and continuous based hydrological modeling. IJSRD (International Journal for Scientific Research & Development), 1 (11), 2489–2491.
  • Pechlivanidis, I.G., McIntyre, N., and Wheater, H.S., 2017. The significan ce of spatial variability of rainfall onsimulated runoff: an evaluation based on the Upper Lee catchment, UK. Hydrology Research, 48 (4), 1118–1130. doi:10.2166/nh.2016.038.
  • Peleg, N., et al., 2017. Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling. Hydrology and Earth System Sciences, 21 (3), 1559–1572. doi:10.5194/hess-21-1559-2017.
  • Peleg, N., et al., 2021. Rainfall spatial-heterogeneity accelerates landscape evolution processes. Geomorphology, 390, 107863. doi:10.1016/j.geomorph.2021.107863.
  • Ramires, T.G., et al., 2021. Validation of stepwise-based procedure in GAMLSS. Journal of Data Science, 19 (1), 96–110. doi:10.6339/21-jds1003.
  • Ramly, S., et al., 2020. Flood estimation for SMART control operation using integrated radar rainfall input with the HEC-HMS model. Water Resources Management, 34 (10), 3113–3127. doi:10.1007/s11269-020-02595-4.
  • Rao, K.H.V.D., et al., 2011. A distributed model for real-time flood forecasting in the Godavari Basin using space inputs. International Journal of Disaster Risk Science, 2 (3), 31–40. doi:10.1007/s13753-011-0014-7.
  • Razi, M.A.M., et al., 2010. Flood Estimation Studies using Hydrologic Modeling System (HEC-HMS) for Johor River, Malaysia. Journal of Applied Sciences, 10 (11), 930–939. doi:10.3923/jas.2010.930.939.
  • Saharia, M., et al., 2017. Mapping flash flood severity in the United States. Journal of Hydrometeorology, 18 (2), 397–411. doi:10.1175/jhm-d-16-0082.1.
  • Saharia, M., et al., 2021. On the impact of rainfall spatial variability, geomorphology, and climatology on flash floods. Water Resources Research, 57 (9). doi:10.1029/2020WR029124.
  • Sapriza-Azuri, G., et al., 2015. Impacts of rainfall spatial variability on hydrogeological response. Water Resources Research, 51 (2), 1300–1314. doi:10.1002/2014WR016168.
  • Sarkar, S. and Maity, R., 2020. Increase in probable maximum precipitation in a changing climate over India. Journal of Hydrology, 585, 124806. doi:10.1016/j.jhydrol.2020.124806.
  • Shaha, S.M.S., O’connellbv, P.E., and Hosking, J.R.M., 1996. Modelling the effects of spatial variability in rainfall on catchment response. 1. Formulation and calibration of a stochastic rainfall field model. Journal of Hydrology, 175 (1–4), 67–88. doi:10.1016/S0022-1694(96)80006-0.
  • Shrestha, M.K., et al., 2016. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agricultural Water Management, 175, 61–71. doi:10.1016/j.agwat.2016.02.009
  • Sindhu, K., and Durga Rao K. H. V., 2017. Hydrological and hydrodynamic modeling for flood damage mitigation in Brahmani–Baitarani River Basin, India. Geocarto International, 32 (9), 1004–1016. doi:10.1080/10106049.2016.1178818.
  • Skhakhfa, I.D. and Ouerdachi, L., 2016. Hydrological modelling of Wadi ressoul watershed, Algeria, by HEC-HMS model. Journal of Water and Land Development, 31 (1), 139–147. doi:10.1515/jwld-2016-0045.
  • Smith, M.B., et al., 2004. Runoff response to spatial variability in precipitation: an analysis of observed data. Journal of Hydrology, 298 (1–4), 267–286. doi:10.1016/j.jhydrol.2004.03.039.
  • Song, Y., Zhang, J., and Lai, Y., 2021. Influence of multisite calibration on streamflow estimation based on the hydrological model with cmads inputs. Journal of Water and Climate Change, 12 (7), 3264–3281. doi:10.2166/wcc.2021.115.
  • Stasinopoulos, D.M. and Rigby, R.A., 2007. Journal of statistical software generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23 (7). doi:10.18637/jss.v023.i07.
  • Stasinopoulos, M., Rigby, B., and Akantziliotou, C. 2008. Instructions on how to use the gamlss package in R second edition. Available from: https://docslib.org/doc/11758531/instructions-on-how-to-use-the-gamlss-package-in-r-second-edition.
  • Tilford, K.A., Sene, K.J., and Khatibi, R., 2007. Flood forecasting model selection: a structured approach. Advances in Natural and Technological Hazards Research, 25, 401–416. doi:10.1007/978-1-4020-4200-3_21.
  • Tramblay, Y., et al., 2010. Improvement of flash flood modelling using spatial patterns of rainfall: a case study in southern France. IAHS-AISH Publication, 340 (January), 172–178.
  • Tripathi, P., 2015. Flood disaster in India: an analysis of trend and preparedness. Interdisciplinary Journal of Contemporary Research, 2 (4), 91–98.
  • Unduche, F., et al., 2018. Evaluation of four hydrological models for operational flood forecasting in a Canadian Prairie watershed. Hydrological Sciences Journal, 63 (8), 1133–1149. doi:10.1080/02626667.2018.1474219.
  • Vema, V.K. and Sudheer, K.P., 2020. Towards quick parameter estimation of hydrological models with large number of computational units. Journal of Hydrology, 587, 124983. doi:10.1016/j.jhydrol.2020.124983.
  • Vema, V., Sudheer, K.P., and Chaubey, I., 2018. Hydrologic design of water harvesting structures through simulation-optimization framework. Journal of Hydrology, 563, 460–469. doi:10.1016/j.jhydrol.2018.06.020.
  • Volpi, E., Di Lazzaro, M., and Fiori, A., 2012. A simplified framework for assessing the impact of rainfall spatial variability on the hydrologic response. Advances in Water Resources, 46, 1–10. doi:10.1016/j.advwatres.2012.04.011.
  • Vrugt, J.A. and Robinson, B.A., 2007. Improved evolutionary optimization from genetically adaptive multimethod search. Proceedings of the National Academy of Sciences of the United States of America, 104 (3), 708–711. doi:10.1073/pnas.0610471104.
  • Younger, P.M., Freer, J.E., and Beven, K.J., 2009. Detecting the effects of spatial variability of rainfall on hydrological modelling within an uncertainty analysis framework. Hydrological Processes, 23 (14), 1988–2003. doi:10.1002/hyp.7341.
  • Zema, D.A., et al., 2017. Comparing different infiltration methods of the HEC-HMS model: the case study of the Mésima Torrent (Southern Italy). Land Degradation & Development, 28 (1), 294–308. doi:10.1002/ldr.2591.
  • Zhang, J., et al., 2018. Study on the effect of rainfall spatial variability on runoff modelling. Journal of Hydroinformatics, 20 (3), 577–587. doi:10.2166/hydro.2018.129.
  • Zoccatelli, D., et al., 2011. Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response. Hydrology and Earth System Sciences, 15 (12), 3767–3783. doi:10.5194/hess-15-3767-2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.