586
Views
5
CrossRef citations to date
0
Altmetric
Biomechanics

Physiological responses at the lactate-minimum-intensity with and without prior high-intensity exercise

, , , , &
Pages 2106-2113 | Accepted 02 Feb 2016, Published online: 29 Feb 2016

References

  • Ammar, A., Chtourou, H., Trabelsi, K., Padulo, J., Turki, M., El Abed, K., … Hakim, A. (2015). Temporal specificity of training: Intra-day effects on biochemical responses and Olympic-Weightlifting performances. Journal of Sports Sciences, 33(4), 358–368. doi:10.1080/02640414.2014.944559
  • Bacon, L., & Kern, M. (1999). Evaluating a test protocol for predicting maximum lactate steady state. Journal of Sports Medicine and Physical Fitness, 39(4), 300–308.
  • Baron, B., Dekerle, J., Robin, S., Neviere, R., Dupont, L., Matran, R., … Pelayo, P. (2003). Maximal lactate steady state does not correspond to a complete physiological steady state. International Journal of Sports Medicine, 24(8), 582–587. doi:10.1055/s-2003-43264
  • Baron, B., Noakes, T. D., Dekerle, J., Moullan, F., Robin, S., Matran, R., & Pelayo, P. (2008). Why does exercise terminate at the maximal lactate steady state intensity? British Journal of Sports Medicine, 42(10), 828–833. doi:10.1136/bjsm.2007.040444
  • Beneke, R. (2003). Methodological aspects of maximal lactate steady state-implications for performance testing. European Journal of Applied Physiology, 89(1), 95–99. doi:10.1007/s00421-002-0783-1
  • Beneke, R., & Von Duvillard, S. P. (1996). Determination of maximal lactate steady state response in selected sports events. Medicine & Science in Sports & Exercise, 28(2), 241–246. doi:10.1097/00005768-199602000-00013
  • Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine & Science in Sports & Exercise, 14(5), 377–381. doi:10.1249/00005768-198205000-00012
  • Buchheit, M., Chivot, A., Parouty, J., Mercier, D., Al Haddad, H., Laursen, P. B., & Ahmaidi, S. (2010). Monitoring endurance running performance using cardiac parasympathetic function. European Journal of Applied Physiology, 108(6), 1153–1167. doi:10.1007/s00421-009-1317-x
  • Chidnok, W., Fulford, J., Bailey, S. J., DiMenna, F. J., Skiba, P. F., Vanhatalo, A., & Jones, A. M. (2013). Muscle metabolic determinants of exercise tolerance following exhaustion: Relationship to the “critical power”. Journal of Applied Physiology, 115(2), 243–250. doi:10.1152/japplphysiol.00334.2013
  • De Araujo, G. G., Papoti, M., Manchado, F. B., De Mello, M. A. R., & Gobatto, C. A. (2007). Protocols for hyperlactatemia induction in the lactate minimum test adapted to swimming rats. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 148(4), 888–892. pii: S1095-6433(07)01581-4. doi:10.1016/j.cbpa.2007.09.002
  • Dotan, R. (2012). Reverse lactate threshold: A novel single-session approach to reliable high-resolution estimation of the anaerobic threshold. International Journal of Sports Physiology and Performance, 7(2), 141–151.
  • Dotan, R., Zigel, L., Rotstein, A., Greenberg, T., Benyamini, Y., & Falk, B. (2011). Reliability and validity of the lactate-minimum test. A revisit. The Journal of Sports Medicine and Physical Fitness, 51(1), 42–49.
  • Ferguson, C., Whipp, B. J., Cathcart, A. J., Rossiter, H. B., Turner, A. P., & Ward, S. A. (2007). Effects of prior very-heavy intensity exercise on indices of aerobic function and high-intensity exercise tolerance. Journal of Applied Physiology, 103(3), 812–822. pii: 01410.2006. doi:10.1152/japplphysiol.01410.2006
  • Fontana, P., Boutellier, U., & Knöpfli-Lenzin, C. (2009). Time to exhaustion at maximal lactate steady state is similar for cycling and running in moderately trained subjects. European Journal of Applied Physiology, 107(2), 187–192. doi:10.1007/s00421-009-1111-9
  • Green, S. (1995). Measurement of anaerobic work capacities in humans. Sports Medicine, 19(1), 32–42. doi:10.2165/00007256-199519010-00003
  • Grossl, T., De Lucas, R. D., De Souza, K. M., & Guglielmo, L. G. A. (2012). Time to exhaustion at intermittent maximal lactate steady state is longer than continuous cycling exercise. Applied Physiology Nutrition and Metabolism, 37(6), 1047–1053. doi:10.1139/H2012-088
  • Jones, A. M., & Doust, J. H. (1998). The validity of the lactate minimum test for determination of the maximal lactate steady state. Medicine & Science in Sports & Exercise, 30(8), 1304–1313. doi:10.1097/00005768-199808000-00020
  • Knoepfli-Lenzin, C., & Boutellier, U. (2011). Lactate Minimum Is Valid to Estimate Maximal Lactate Steady State in Moderately and Highly Trained Subjects. Journal of Strength and Conditioning Research, 25(5), 1355–1359. doi:10.1519/Jsc.0b013e3181d6dbf4
  • Kuipers, H., Verstappen, F. T., Keizer, H. A., Geurten, P., & Van Kranenburg, G. (1985). Variability of aerobic performance in the laboratory and its physiologic correlates. International Journal of Sports Medicine, 6(4), 197–201. doi:10.1055/s-2008-1025839
  • MacIntosh, B. R., Esau, S., & Svedahl, K. (2002). The lactate minimum test for cycling: Estimation of the maximal lactate steady state. Canadian Journal of Applied Physiology, 27(3), 232–249. doi:10.1139/h02-014
  • Mendes, T. T., Fonseca, T. R., Ramos, G. P., Wilke, C. F., Cabido, C. E. T., De Barros, C. L. M., … Garcia, E. S. (2013). Six weeks of aerobic training improves VO2max and MLSS but does not improve the time to fatigue at the MLSS. European Journal of Applied Physiology, 113(4), 965–973. doi:10.1007/s00421-012-2501-y
  • Messonnier, L., Kristensen, M., Juel, C., & Denis, C. (2007). Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans. Journal of Applied Physiology, 102(5), 1936–1944. doi:10.1152/japplphysiol.00691.2006
  • Meyer, T., Lucía, A., Earnest, C. P., & Kindermann, W. (2005). A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters – theory and application. International Journal of Sports Medicine, 26(Suppl 1), S38–S48. doi:10.1055/s-2004-830514
  • Miyagi, W. E., Malta, E. D., & Zagatto, A. M. (2015). Maximal Oxygen Uptake Cannot Be Determined in the Incremental Phase of the Lactate Minimum Test on a Cycle Ergometer. Journal of Sports Science and Medicine, 14(2), 372–378.
  • Noakes, T. D., St Clair Gibson, A., & Lambert, E. V. (2005). From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans: Summary and conclusions. British Journal of Sports Medicine, 39(2), 120–124. doi:10.1136/bjsm.2003.010330
  • Özyener, F., Rossiter, H. B., Ward, S. A., & Whipp, B. J. (2001). Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. The Journal of Physiology, 533(3), 891–902. doi:10.1111/tjp.2001.533.issue-3
  • Padulo, J., Di Capua, R., & Viggiano, D. (2012). Pedaling time variability is increased in dropped riding position. European Journal of Applied Physiology, 112(8), 3161–3165. doi:10.1007/s00421-011-2282-8
  • Seo, Y. (1984). Effects of extracellular pH on lactate efflux from frog sartorius muscle. The American Journal of Physiology, 247(3 Pt 1), C175–C181.
  • Stegmann, H., & Kindermann, W. (1982). Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol·l−1 lactate. International Journal of Sports Medicine, 3(2), 105–110. doi:10.1055/s-2008-1026072
  • Tegtbur, U., Busse, M. W., & Braumann, K. M. (1993). Estimation of an individual equilibrium between lactate production and catabolism during exercise. Medicine & Science in Sports & Exercise, 25(5), 620–627. doi:10.1249/00005768-199305000-00015
  • Thomas, C., Perrey, S., Lambert, K., Hugon, G., Mornet, D., & Mercier, J. (2005). Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. Journal of Applied Physiology, 98(3), 804–809. doi:10.1152/japplphysiol.01057.2004
  • Vanuxem, D., Delpierre, S., Fauvelle, E., Guillot, C., & Vanuxem, P. (1998). Blood ammonia and ventilation at maximal exercise. Archives of Physiology and Biochemistry, 106(4), 290–296. doi:10.1076/apab.106.4.290.4371
  • Zagatto, A., Padulo, J., Müller, P., Miyagi, W., Malta, E., & Papoti, M. (2014). Hyperlactemia induction modes affect the lactate minimum power and physiological responses in cycling. Journal of Strength & Conditioning Research, 28(10), 2927–2934. doi:10.1519/JSC.0000000000000490

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.