507
Views
18
CrossRef citations to date
0
Altmetric
Original Article

Assessment of passive drag in swimming by numerical simulation and analytical procedure

, , &
Pages 492-498 | Accepted 10 Apr 2017, Published online: 28 Apr 2017

References

  • Barbosa, T. M., Bragada, J. A., Reis, V. M., Marinho, D. A., Carvalho, C., & Silva, A. J. (2010). Energetics and biomechanics as determining factors of swimming performance: Updating the state of the art. Journal of Science and Medicine in Sport, 13(2), 262–269. doi:10.1016/j.jsams.2009.01.003
  • Barbosa, T. M., Costa, M. J., Morais, J. E., Morouço, P., Moreira, M., Garrido, N. D., … Silva, A. J. (2013). Characterization of speed fluctuation and drag force in young swimmers: A gender comparison. Human Movement Science, 32(6), 1214–1225. doi:10.1016/j.humov.2012.07.009
  • Barbosa, T. M., Morais, J. E., Forte, P., Neiva, H., Garrido, N. D., & Marinho, D. A. (2015). A comparison of experimental and analytical procedures to measure passive drag in human swimming. PLoS One, 10(7), e0130868. doi:10.1371/journal.pone.0130868
  • Bixler, B., Pease, D., & Fairhurst, F. (2007). The accuracy of computational fluid dynamics analysis of the passive drag of a male swimmer. Sports Biomechanics, 6(1), 81–98. doi:10.1080/14763140601058581
  • Clarys, J. (1979). Human morphology and hydrodynamics. In J. Terauds (Ed.), Swimming science III (pp. 3–41). Baltimore, MD: University Park Press.
  • Costa, L., Mantha, V. R., Silva, A. J., Fernandes, R. J., Marinho, D. A., Vilas-Boas, J. P., … Rouboa, A. (2015). Computational fluid dynamics vs. inverse dynamics methods to determine passive drag in two breaststroke glide positions. Journal of Biomechanics, 48(10), 2221–2226. doi:10.1016/j.jbiomech.2015.03.005
  • Craig, A. B., & Pendeegast, D. R. (1979). Relationships of stroke rate, distance per stroke, and velocity in competitive swimming. Medicine & Science in Sports & Exercise, 11(3), 278–283. doi:10.1249/00005768-197901130-00011
  • Dadashi, F., Crettenand, F., Millet, G. P., Seifert, L., Komar, J., & Aminian, K. (2013). Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals. Journal of Sports Sciences, 31(11), 1251–1260. doi:10.1080/02640414.2013.778420
  • Du Bois, D., & Du Bois, E. F. (1916). A formula to estimate the approximate surface area if height and weight be known. Archives of Internal Medicine, 17, 863–871. doi:10.1001/archinte.1916.00080130010002
  • Figueiredo, P., Barbosa, T. M., Vilas-Boas, J. P., & Fernandes, R. J. (2012). Energy cost and body centre of mass’ 3D intracycle velocity variation in swimming. European Journal of Applied Physiology, 112(9), 3319–3326. doi:10.1007/s00421-011-2284-6
  • Formosa, D. P., Sayers, M. G., & Burkett, B. (2014). Quantifying stroke coordination during the breathing action in front-crawl swimming using an instantaneous net drag force profile. Journal of Sports Sciences, 32(18), 1729–1737. doi:10.1080/02640414.2014.915424
  • Gatta, G., Cortesi, M., Fantozzi, S., & Zamparo, P. (2015). Planimetric frontal area in the four swimming strokes: Implications for drag, energetics and speed. Human Movement Science, 39, 41–54. doi:10.1016/j.humov.2014.06.010
  • Hochstein, S., & Blickhan, R. (2011). Vortex re-capturing and kinematics in human underwater undulatory swimming. Human Movement Science, 30(5), 998–1007. doi:10.1016/j.humov.2010.07.002
  • Kjendlie, P.-L., & Stallman, R. K. (2008). Drag characteristics of competitive swimming children and adults. Journal of Applied Biomechanics, 24, 35–42. doi:10.1123/jab.24.1.35
  • Lyttle, A., Blanksby, B., Elliott, B., & Lloyd, D. (1999). Optimal depth for streamlined gliding. In K. Keskinen, P. Komi, & P. Hollander (Eds.), Biomechanics and medicine in swimming VIII (pp. 165–170). Jyvaskyla: Gummerus Printing.
  • Lyttle, A. D., Blanksby, B. A., Elliott, B. C., & Lloyd, D. G. (1998). The effect of depth and velocity on drag during the streamlined glide. Journal of Swimming Research, 13, 15–22.
  • Marinho, D., Barbosa, T. M., Rouboa, A., & Silva, A. (2011). The hydrodynamic study of the swimming gliding: A two-dimensional computational fluid dynamics (CFD) analysis. Journal of Human Kinetics, 29, 49–57. doi:10.2478/v10078-011-0039-4
  • Miyashita, M., & Tsunoda, T. (1978). Water resistance in relation to body size. In J. Terauds & E. W. Beringfield (Eds.), Swimming medicine III (pp. 395–401). Baltimore, MD: University Park Press.
  • Molland, A. F., Turnock, S. R., & Hudson, D. A. (2011). Ship resistance and propulsion: Practical estimation of ship propulsive power. Cambridge: Cambridge University Press.
  • Mollendorf, J. C., Termin, A. C., Oppenheim, E. R. I. C., & Pendergast, D. R. (2004). Effect of swim suit design on passive drag. Medicine & Science in Sports & Exercise, 36(6), 1029–1035. doi:10.1249/01.MSS.0000128179.02306.57
  • Munson, B. R., Young, D. F., & Okiishi, T. H. (1990). Fundamentals of fluid mechanics. New York, NY: John Wiley & Sons.
  • Rouboa, A., Silva, A., Leal, L., Rocha, J., & Alves, F. (2006). The effect of swimmer’s hand/forearm acceleration on propulsive forces generation using computational fluid dynamics. Journal of Biomechanics, 39(7), 1239–1248. doi:10.1016/j.jbiomech.2005.03.012
  • Seifert, L., Komar, J., Barbosa, T., Toussaint, H., Millet, G., & Davids, K. (2014). Coordination pattern variability provides functional adaptations to constraints in swimming performance. Sports Medicine, 44(10), 1333–1345. doi:10.1007/s40279-014-0210-x
  • Shahbazi, M., Sanders, R., McCabe, C., & Adams, D. (2007). Investigating correlations between swim pike turn kinematics variables in front crawl. In H.-J. Menzel & M. H. Chagas (Eds), Proceedings XXV symposium of the international society of biomechanics in sports symposium (pp. 381–384). Ouro Preto: Federal University of Minas Gerais.
  • Takagi, H., Nakashima, M., Sato, Y., Matsuuchi, K., & Sanders, R. H. (2015). Numerical and experimental investigations of human swimming motions. Journal of Sports Sciences, 23, 1–17.
  • Vantorre, J., Chollet, D., & Seifert, L. (2014). Biomechanical analysis of the swim-start: A review. Journal of Sports Science & Medicine, 13(2), 223.
  • Vennell, R., Pease, D., & Wilson, B. (2006). Wave drag on human swimmers. Journal of Biomechanics, 39(4), 664–671. doi:10.1016/j.jbiomech.2005.01.023
  • Vilas-Boas, J.P, Costa, L, Fernandes, R.J, Ribeiro, J, Figueiredo, P, Marinho, D.A, Silva, A.J, Rouboa, A, & Machado, L. (2010). Determination of the drag coefficient during the first and second gliding positions of the breaststroke underwater stroke. Journal Of Applied Biomechanics, 26, 324-331. doi:10.1123/jab.26.3.324
  • Yeadon, M. R. (1990). The simulation of aerial movement—II. A mathematical inertia model of the human body. Journal of Biomechanics, 23(1), 67–74. doi:10.1016/0021-9290(90)90370-I
  • Zamparo, P., Gatta, G., Pendergast, D., & Capelli, C. (2009). Active and passive drag: The role of trunk incline. European Journal of Applied Physiology, 106(2), 195–205. doi:10.1007/s00421-009-1007-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.