1,509
Views
16
CrossRef citations to date
0
Altmetric
Sports Performance

Hyperoxia for performance and training

ORCID Icon &
Pages 1515-1522 | Accepted 20 Oct 2017, Published online: 08 Nov 2017

References

  • Ahotupa, M., Mäntylä, E., Peltola, V., Puntala, A., & Toivonen, H. (1992). Pro-oxidant effects of normobaric hyperoxia in rat tissues. Acta Physiologica Scandinavica, 145(2), 151–157. doi:10.1111/j.1748-1716.1992.tb09350.x
  • Alvarez-Herms, J., Julia-Sanchez, S., Gatterer, H., Blank, C., Corbi, F., Pages, T., … Viscor, G. (2016). Anaerobic training in hypoxia: A new approach to stimulate the rating of effort perception. Physiology & Behavior, 163, 37–42. doi:10.1016/j.physbeh.2016.04.035
  • Amann, M., Eldridge, M. W., Lovering, A. T., Stickland, M. K., Pegelow, D. F., & Dempsey, J. A. (2006). Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. The Journal of Physiology, 575(3), 937–952. doi:10.1113/jphysiol.2006.113936
  • Anselme, F., Caillaud, C., Couret, I., Rossi, M., & Prefaut, C. (1994). Histamine and exercise-induced hypoxemia in highly trained athletes. Journal Applications Physiological (1985), 76(1), 127–132.
  • Asmussen, E., & Nielsen, M. (1955). The cardiac output in rest and work at low and high oxygen pressures. Acta Physiologica Scandinavica, 35(1), 73–83. doi:10.1111/j.1748-1716.1955.tb01266.x
  • Åstrand, P. O., Cuddy, T. E., Saltin, B., & Stenberg, J. (1964). Cardiac output during submaximal and maximal work. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 19, 268–274.
  • Bannister, R. G., & Cunningham, D. J. (1954). The effects on the respiration and performance during exercise of adding oxygen to the inspired air. The Journal of Physiology, 125(1), 118–137. doi:10.1113/jphysiol.1954.sp005145
  • Bellemare, F., & Bigland-Ritchie, B. (1987). Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation. Journal Applications Physiological (1985), 62(3), 1307–1316.
  • Blomstrand, E., Krustrup, P., Sondergaard, H., Radegran, G., Calbet, J. A., & Saltin, B. (2011). Exercise training induces similar elevations in the activity of oxoglutarate dehydrogenase and peak oxygen uptake in the human quadriceps muscle. Pflügers Archiv - European Journal of Physiology, 462(2), 257–265. doi:10.1007/s00424-011-0978-6
  • Boushel, R., Gnaiger, E., Calbet, J. A., Gonzalez-Alonso, J., Wright-Paradis, C., Sondergaard, H., … Saltin, B. (2011). Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans. Mitochondrion, 11(2), 303–307. doi:10.1016/j.mito.2010.12.006
  • Boushel, R., & Saltin, B. (2013). Ex vivo measures of muscle mitochondrial capacity reveal quantitative limits of oxygen delivery by the circulation during exercise. The International Journal of Biochemistry & Cell Biology, 45(1), 68–75. doi:10.1016/j.biocel.2012.09.024
  • Calbet, J. A., Jensen-Urstad, M., van Hall, G., Holmberg, H. C., Rosdahl, H., & Saltin, B. (2004). Maximal muscular vascular conductances during whole body upright exercise in humans. The Journal of Physiology, 558(Pt(1)), 319–331. doi:10.1113/jphysiol.2003.059287
  • Cano, I., Mickael, M., Gomez-Cabrero, D., Tegnér, J., Roca, J., & Wagner, P. D. (2013). Importance of mitochondrial P(O2) in maximal O2 transport and utilization: A theoretical analysis. Respiratory Physiology & Neurobiology, 189(3), 477–483. doi:10.1016/j.resp.2013.08.020
  • Cano, I., Roca, J., & Wagner, P. D. (2015). Effects of lung ventilation-perfusion and muscle metabolism-perfusion heterogeneities on maximal O2 transport and utilization. The Journal of Physiology, 593(8), 1841–1856. doi:10.1113/jphysiol.2014.286492
  • Cardús, J., Marrades, R. M., Roca, J., Barberà, J. A., Diaz, O., Masclans, J. R., … Wagner, P. D. (1998). Effects of F(I)O2 on leg VO2 during cycle ergometry in sedentary subjects. Medicine & Science in Sports & Exercise, 30(5), 697–703. doi:10.1097/00005768-199805000-00009
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hilldale,NJ: Lawrence Earlbaum.
  • Criswell, D., Powers, S., Dodd, S., Lawler, J., Edwards, W., Renshler, K., & Grinton, S. (1993). High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Medicine & Science in Sports & Exercise, 25(10), 1135–1140. doi:10.1249/00005768-199310000-00009
  • Curtelin, D., Morales-Alamo, D., Torres-Peralta, R., Rasmussen, P., Martin-Rincon, M., Perez-Valera, M., … Calbet, J. A. (2017). Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans. Journal of Cerebral Blood Flow and Metabolism\, 271678 × 17691986. doi:10.1177/0271678X17691986
  • Dempsey, J. A. (1986). J.B. Wolffe memorial lecture. Is the lung built for exercise? Medicine & Science in Sports & Exercise, 18(2), 143–155. doi:10.1249/00005768-198604000-00001
  • Dempsey, J. A., Romer, L., Rodman, J., Miller, J., & Smith, C. (2006). Consequences of exercise-induced respiratory muscle work. Respiratory Physiology & Neurobiology, 151(2–3), 242–250. doi:10.1016/j.resp.2005.12.015
  • Dempsey, J. A., & Wagner, P. D. (1999). Exercise-induced arterial hypoxemia. Journal Applications Physiological (1985), 87(6), 1997–2006.
  • Dillard, C. J., Litov, R. E., Savin, W. M., Dumelin, E. E., & Tappel, A. L. (1978). Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. Journal Applications Physiological Respiratory Environment Exercise Physiological, 45(6), 927–932.
  • Dominelli, P. B., Archiza, B., Ramsook, A. H., Mitchell, R. A., Peters, C. M., Molgat-Seon, Y., … Sheel, A. W. (2017). Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise. Experimental Physiology. doi:10.1113/EP086566
  • Dominelli, P. B., Foster, G. E., Dominelli, G. S., Henderson, W. R., Koehle, M. S., McKenzie, D. C., & Sheel, A. W. (2013). Exercise-induced arterial hypoxaemia and the mechanics of breathing in healthy young women. The Journal of Physiology, 591(12), 3017–3034. doi:10.1113/jphysiol.2013.252767
  • Dominelli, P. B., Henderson, W. R., & Sheel, A. W. (2016). A proportional assist ventilator to unload respiratory muscles experimentally during exercise in humans. Experimental Physiology, 101(6), 754–767. doi:10.1113/EP085735
  • Ekblom, B., & Berglund, B. (1991). Effect of erythropoietin administration on maximal aerobic power. Scandinavian Journal of Medicine & Science in Sports, 1(2), 88–93. doi:10.1111/j.1600-0838.1991.tb00276.x
  • Ekblom, B., Goldbarg, A. N., & Gullbring, B. (1972). Response to exercise after blood loss and reinfusion. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 33(2), 175–180.
  • Ekblom, B., & Hermansen, L. (1968). Cardiac output in athletes. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 25(5), 619–625.
  • Ekblom, B., Huot, R., Stein, E. M., & Thorstensson, A. T. (1975). Effect of changes in arterial oxygen content on circulation and physical performance. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 39(1), 71–75.
  • Ekblom, B., Huot, R., Stein, E. M., & Thorstensson, A. T. (1998). The influence of PaO2, pH and SaO2 on maximal oxygen uptake. Acta Physiologica Scandinavica, 164(1), 89–97. doi:10.1046/j.1365-201X.1998.00405.x
  • Fagraeus, L., Karlsson, J., Linnarsson, D., & Saltin, B. (1973). Oxygen uptake during maximal work at lowered and raised ambient air pressures. Acta Physiologica Scandinavica, 87(3), 411–421. doi:10.1111/j.1748-1716.1973.tb05405.x
  • Fisher-Wellman, K., & Bloomer, R. J. (2009). Acute exercise and oxidative stress: A 30 year history. Dynamic Medicine, 8, 1. doi:10.1186/1476-5918-8-1
  • Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiol Rev, 81(4), 1725–1789.
  • Gifford, J. R., Garten, R. S., Nelson, A. D., Trinity, J. D., Layec, G., Witman, M. A., … Richardson, R. S. (2015). Symmorphosis and skeletal muscle VO2max: In vivo and in vitro measures reveal differing constraints in the exercise-trained and untrained human. The Journal of Physiology. doi:10.1113/JP271229
  • Granata, C., Oliveira, R. S., Little, J. P., Renner, K., & Bishop, D. J. (2015). Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. Faseb J. doi:10.1096/fj.15-276907
  • Guenette, J. A., & Sheel, A. W. (2007). Exercise-induced arterial hypoxaemia in active young women. Applied Physiology, Nutrition, and Metabolism, 32(6), 1263–1273. doi:10.1139/H07-122
  • Hamalainen, I. T., Nummela, A. T., & Rusko, H. K. (2000). Training in hyperoxia improves 3 000-m running performance in national level athletes. Med Sci Sports Exerc, 32, S47.
  • Harabin, A. L., Braisted, J. C., & Flynn, E. T. (1990). Response of antioxidant enzymes to intermittent and continuous hyperbaric oxygen. Journal Applications Physiological (1985), 69(1), 328–335.
  • Hill, A. V., Long, C. N. H., & Lupton, H. (1924). Muscular Exercise, Lactic Acid, and the Supply and Utilisation of Oxygen. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 97(681), 84–138. doi:10.1098/rspb.1924.0045
  • Hogan, M. C., Cox, R. H., & Welch, H. G. (1983). Lactate accumulation during incremental exercise with varied inspired oxygen fractions. Journal Applications Physiological Respiratory Environment Exercise Physiological, 55(4), 1134–1140.
  • Joyner, M. J., & Casey, D. P. (2015). Regulation of increased blood flow (hyperemia) to muscles during exercise: A hierarchy of competing physiological needs. Physiological Reviews, 95(2), 549–601. doi:10.1152/physrev.00035.2013
  • Kaufman, M. P., Rybicki, K. J., Waldrop, T. G., & Ordway, G. A. (1984). Effect of ischemia on responses of group III and IV afferents to contraction. Journal Applications Physiological Respiratory Environment Exercise Physiological, 57(3), 644–650.
  • Kayser, B., Narici, M., Binzoni, T., Grassi, B., & Cerretelli, P. (1994). Fatigue and exhaustion in chronic hypobaric hypoxia: Influence of exercising muscle mass. Journal Applications Physiological (1985), 76(2), 634–640.
  • Kilding, A. E., Wood, M., Sequira, G., & Bonetti, D. L. (2012). Effect of hyperoxic-supplemented interval training on endurance performance in trained cyclists. International Journal of Sports Medicine, 33(5), 359–363. doi:10.1055/s-0031-1297999
  • Knight, D. R., Poole, D. C., Hogan, M. C., Bebout, D. E., & Wagner, P. D. (1996). Effect of inspired O2 concentration on leg lactate release during incremental exercise. Journal Applications Physiological (1985), 81(1), 246–251.
  • Larsen, F. J., Schiffer, T. A., Ørtenblad, N., Zinner, C., Morales-Alamo, D., Willis, S. J., … Boushel, R. (2015). High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation. Faseb J. doi:10.1096/fj.15-276857
  • Linossier, M. T., Dormois, D., Arsac, L., Denis, C., Gay, J. P., Geyssant, A., & Lacour, J. R. (2000). Effect of hyperoxia on aerobic and anaerobic performances and muscle metabolism during maximal cycling exercise. Acta Physiologica Scandinavica, 168(3), 403–411. doi:10.1046/j.1365-201x.2000.00648.x
  • Maeda, T., & Yasukouchi, A. (1998). Blood lactate disappearance during breathing hyperoxic gas after exercise in two different physical fitness groups–On the workload fixed at 130% AT. Appl Human Sci, 17(2), 33–40. doi:10.2114/jpa.17.33
  • Margaria, R., Camporesi, E., Aghemo, P., & Sassi, G. (1972). The effect of O 2 breathing on maximal aerobic power. Pflugers Archiv : European Journal of Physiology, 336(3), 225–235. doi:10.1007/BF00590047
  • Morris, D. M., Kearney, J. T., & Burke, E. R. (2000). The effects of breathing supplemental oxygen during altitude training on cycling performance. Journal of Science and Medicine in Sport, 3(2), 165–175. doi:10.1016/S1440-2440(00)80078-X
  • Morris, S. B. (2008). Estimating effect sizes from pretest-posttest-control group designs. Organizational Research Methods, 11(2), 364–386. 10.1177/1094428106291059
  • Mortensen, S. P., & Saltin, B. (2014). Regulation of the skeletal muscle blood flow in humans. Experimental Physiology. doi:10.1113/expphysiol.2014.081620
  • Mourtzakis, M., González-Alonso, J., Graham, T. E., & Saltin, B. (2004). Hemodynamics and O2 uptake during maximal knee extensor exercise in untrained and trained human quadriceps muscle: Effects of hyperoxia. Journal Applications Physiological (1985), 97(5), 1796–1802. doi:10.1152/japplphysiol.00169.2004
  • Murray, K., Sommerville, A., McKenna, M., Edgar, G., & Murray, A. (2016). Normobaric Hyperoxia training in elite female hockey players. The Journal of Sports Medicine and Physical Fitness, 56(12), 1488–1493.
  • Nakazono, Y., & Miyamoto, Y. (1987). Effect of hypoxia and hyperoxia on cardiorespiratory responses during exercise in man. The Japanese Journal of Physiology, 37(3), 447–457. doi:10.2170/jjphysiol.37.447
  • Nielsen, H., Boushel, R., Madsen, P., & Secher, N. H. (1999). Cerebral desaturation during exercise reversed by O2 supplementation. The American Journal of Physiology, 277(3 Pt 2), H1045–1052.
  • Nielsen, M., & Hansen, O. (1937). Maximale körperliche Arbeit bei Atmung O2-reicher Luft. Skandinavisches Archiv Für Physiologie, 76, 37–59. doi:10.1111/j.1748-1716.1937.tb01582.x
  • Noakes, T. D., Peltonen, J. E., & Rusko, H. K. (2001). Evidence that a central governor regulates exercise performance during acute hypoxia and hyperoxia. The Journal of Experimental Biology, 204(Pt 18), 3225–3234.
  • Ohya, T., Yamanaka, R., Ohnuma, H., Hagiwara, M., & Suzuki, Y. (2016). Hyperoxia extends time to exhaustion during high-intensity intermittent exercise: A randomized, crossover study in male cyclists. Sports Medicine - Open, 2(1), 34. doi:10.1186/s40798-016-0059-7
  • Oussaidene, K., Prieur, F., Bougault, V., Borel, B., Matran, R., & Mucci, P. (2013). Cerebral oxygenation during hyperoxia-induced increase in exercise tolerance for untrained men. European Journal of Applied Physiology, 113(8), 2047–2056. doi:10.1007/s00421-013-2637-4
  • Paulsen, G., Cumming, K. T., Holden, G., Hallén, J., Rønnestad, B. R., Sveen, O., … Raastad, T. (2014). Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: A double-blind, randomised, controlled trial. The Journal of Physiology, 592(Pt 8), 1887–1901. doi:10.1113/jphysiol.2013.267419
  • Pedersen, P. K., Kiens, B., & Saltin, B. (1999). Hyperoxia does not increase peak muscle oxygen uptake in small muscle group exercise. Acta Physiologica Scandinavica, 166(4), 309–318. doi:10.1046/j.1365-201x.1999.00575.x
  • Peltonen, J. E., Rantamäki, J., Niittymäki, S. P., Sweins, K., Viitasalo, J. T., & Rusko, H. K. (1995). Effects of oxygen fraction in inspired air on rowing performance. Medicine & Science in Sports & Exercise, 27(4), 573–579. doi:10.1249/00005768-199504000-00016
  • Perry, C. G., Reid, J., Perry, W., & Wilson, B. A. (2005). Effects of hyperoxic training on performance and cardiorespiratory response to exercise. Medicine & Science in Sports & Exercise, 37(7), 1175–1179. doi:10.1249/01.mss.0000169610.33318.54
  • Perry, C. G., Talanian, J. L., Heigenhauser, G. J., & Spriet, L. L. (2007). The effects of training in hyperoxia vs. normoxia on skeletal muscle enzyme activities and exercise performance. Journal of Applied Physiology, 102(3), 1022–1027. doi:10.1152/japplphysiol.01215.2006
  • Plet, J., Pedersen, P. K., Jensen, F. B., & Hansen, J. K. (1992). Increased working capacity with hyperoxia in humans. European Journal of Applied Physiology and Occupational Physiology, 65(2), 171–177. doi:10.1007/BF00705076
  • Ploutz-Snyder, L. L., Simoneau, J. A., Gilders, R. M., Staron, R. S., & Hagerman, F. C. (1996). Cardiorespiratory and metabolic adaptations to hyperoxic training. European Journal of Applied Physiology and Occupational Physiology, 73(1–2), 38–48. doi:10.1007/BF00262807
  • Powers, S. K., Ji, L. L., & Leeuwenburgh, C. (1999). Exercise training-induced alterations in skeletal muscle antioxidant capacity: A brief review. Medicine & Science in Sports & Exercise, 31(7), 987–997. doi:10.1097/00005768-199907000-00011
  • Powers, S. K., Lawler, J., Dempsey, J. A., Dodd, S., & Landry, G. (1989). Effects of incomplete pulmonary gas exchange on VO2 max. Journal Applications Physiological (1985), 66(6), 2491–2495.
  • Rice, A. J., Scroop, G. C., Thornton, A. T., McNaughton, N. S., Rogers, K. J., Chapman, M. J., … Gore, C. J. (2000). Arterial hypoxaemia in endurance athletes is greater during running than cycling. Respiration Physiology, 123(3), 235–246. doi:10.1016/S0034-5687(00)00174-2
  • Richardson, R. S., Grassi, B., Gavin, T. P., Haseler, L. J., Tagore, K., Roca, J., & Wagner, P. D. (1999). Evidence of O2 supply-dependent VO2 max in the exercise-trained human quadriceps. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 86(3), 1048–1053.
  • Sahlin, K., Shabalina, I. G., Mattsson, C. M., Bakkman, L., Fernström, M., Rozhdestvenskaya, Z., … Tonkonogi, M. (2010). Ultraendurance exercise increases the production of reactive oxygen species in isolated mitochondria from human skeletal muscle. Journal of Applied Physiology, 108(4), 780–787. doi:10.1152/japplphysiol.00966.2009
  • Santos-Concejero, J., Billaut, F., Grobler, L., Oliván, J., Noakes, T. D., & Tucker, R. (2015). Maintained cerebral oxygenation during maximal self-paced exercise in elite Kenyan runners. Journal of Applied Physiology, 118(2), 156–162. doi:10.1152/japplphysiol.00909.2014
  • Santos-Concejero, J., Billaut, F., Grobler, L., Oliván, J., Noakes, T. D., & Tucker, R. (2017). Brain oxygenation declines in elite Kenyan runners during a maximal interval training session. European Journal of Applied Physiology, 117(5), 1017–1024. doi:10.1007/s00421-017-3590-4
  • Secher, N. H., Clausen, J. P., Klausen, K., Noer, I., & Trap-Jensen, J. (1977). Central and regional circulatory effects of adding arm exercise to leg exercise. Acta Physiologica Scandinavica, 100(3), 288–297. doi:10.1111/j.1748-1716.1977.tb05952.x
  • Sperlich, B., Calbet, J. A., Boushel, R., & Holmberg, H. C. (2016). Is the use of hyperoxia in sports effective, safe and ethical? Scandinavian Journal of Medicine & Science in Sports. doi:10.1111/sms.12746
  • Sperlich, B., Zinner, C., Hauser, A., Holmberg, H. C., & Wegrzyk, J. (2017). The impact of hyperoxia on human performance and recovery. Sports Medicine, 47(3), 429–438. doi:10.1007/s40279-016-0590-1
  • Sperlich, B., Zinner, C., Krueger, M., Wegrzyk, J., Mester, J., & Holmberg, H. C. (2011). Ergogenic effect of hyperoxic recovery in elite swimmers performing high-intensity intervals. Scandinavian Journal of Medicine & Science in Sports, 21(6), e421–e429. doi:10.1111/j.1600-0838.2011.01349.x
  • Spurway, N. C., Ekblom, B., Noakes, T. D., & Wagner, P. D. (2012). What limits [V(·)]O(2max)? A symposium held at the BASES Conference, 6 September 2010. Journal of Sports Sciences, 30(6), 517–531. doi:10.1080/02640414.2011.642809
  • St Croix, C. M., Harms, C. A., McClaran, S. R., Nickele, G. A., Pegelow, D. F., Nelson, W. B., & Dempsey, J. A. (1998). Effects of prior exercise on exercise-induced arterial hypoxemia in young women. Journal Applications Physiological (1985), 85(4), 1556–1563.
  • Stellingwerff, T., Glazier, L., Watt, M. J., LeBlanc, P. J., Heigenhauser, G. J., & Spriet, L. L. (2005). Effects of hyperoxia on skeletal muscle carbohydrate metabolism during transient and steady-state exercise. Journal of Applied Physiology, 98(1), 250–256. doi:10.1152/japplphysiol.00897.2004
  • Stellingwerff, T., Leblanc, P. J., Hollidge, M. G., Heigenhauser, G. J., & Spriet, L. L. (2006). Hyperoxia decreases muscle glycogenolysis, lactate production, and lactate efflux during steady-state exercise. AJP: Endocrinology and Metabolism, 290(6), E1180–E1190. doi:10.1152/ajpendo.00499.2005
  • Subudhi, A. W., Dimmen, A. C., & Roach, R. C. (2007). Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. Journal Applications Physiological (1985), 103(1), 177–183. doi:10.1152/japplphysiol.01460.2006
  • Thomsen, J. J., Rentsch, R. L., Robach, P., Calbet, J. A., Boushel, R., Rasmussen, P., … Lundby, C. (2007). Prolonged administration of recombinant human erythropoietin increases submaximal performance more than maximal aerobic capacity. European Journal of Applied Physiology, 101(4), 481–486. doi:10.1007/s00421-007-0522-8
  • Tucker, R., Kayser, B., Rae, E., Raunch, L., Bosch, A., & Noakes, T. (2007). Hyperoxia improves 20 km cycling time trial performance by increasing muscle activation levels while perceived exertion stays the same. European Journal of Applied Physiology, 101(6), 771–781. doi:10.1007/s00421-007-0458-z
  • Wagner, P. D. (2011). Modeling O₂ transport as an integrated system limiting (.)V(O₂MAX). Comput Methods Programs Biomed, 101(2), 109–114. doi:10.1016/j.cmpb.2010.03.013
  • Weibel, E. R. (1987). Scaling of structural and functional variables in the respiratory system. Annual Review of Physiology, 49, 147–159. doi:10.1146/annurev.ph.49.030187.001051
  • Welch, H. G. (1982). Hyperoxia and human performance: A brief review. Medicine & Science in Sports & Exercise, 14(4), 253–262. doi:10.1249/00005768-198204000-00001
  • Welch, H. G., Bonde-Petersen, F., Graham, T., Klausen, K., & Secher, N. (1977). Effects of hyperoxia on leg blood flow and metabolism during exercise. Journal Applications Physiological Respiratory Environment Exercise Physiological, 42(3), 385–390.
  • Wilber, R. L., Holm, P. L., Morris, D. M., Dallam, G. M., Subudhi, A. W., Murray, D. M., & Callan, S. D. (2004). Effect of FIO2 on oxidative stress during interval training at moderate altitude. Medicine & Science in Sports & Exercise, 36(11), 1888–1894. doi:10.1249/01.MSS.0000145442.25016.DD
  • Wilson, G. D., & Welch, H. G. (1975). Effects of hyperoxic gas mixtures on exercise tolerance in man. Medicine and Science in Sports, 7(1), 48–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.