288
Views
2
CrossRef citations to date
0
Altmetric
Physical Activity for Health

Upper and lower limb loading during weight-bearing activity in children: reaction forces and influence of body weight

, , &
Pages 1640-1647 | Accepted 03 Sep 2017, Published online: 04 Dec 2017

References

  • Anliker, E., Rawer, R., Boutellier, U., & Toigo, M. (2011). Maximum ground reaction force in relation to tibial bone mass in children and adults. Medicine & Science in Sports & Exercise, 43(11), 2102–2109. doi:10.1249/MSS.0b013e31821c4661
  • Bailey, D. A., McKay, H. A., Mirwald, R. L., Crocker, P. R., & Faulkner, R. A. (1999). A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The university of Saskatchewan bone mineral accrual study. Journal of bone and mineral research, 4(10), 1672–1679. doi:10.1359/jbmr.1999.14.10.1672
  • Bates, N. A., Ford, K. R., Myer, G. D., & Hewett, T. E. (2013). Impact differences in ground reaction force and center of mass between the first and second landing phases of a drop vertical jump and their implications for injury risk assessment. Journal of biomechanics, 46(7), 1237–1241. doi:10.1016/j.jbiomech.2013.02.024
  • Bauer, J. J., Fuchs, R. K., Smith, G. A., & Snow, C. M. (2001). Quantifying force magnitude and loading rate from drop landings that induce osteogenesis. Journal of applied biomechanics, 17, 142–152. 10.1123/jab.17.2.142
  • Bonjour, J. P., Chevalley, T., Ferrari, S., & Rizzoli, R. (2009). The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud publica de Mexico, 51, S5–S17. doi:10.1590/S0036-36342009000700004
  • Clark, E. M. (2014). The epidemiology of fractures in otherwise healthy children. Current osteoporosis reports, 12, 272–278. doi:10.1007/s11914-014-0227-y
  • Daly, R., Rich, P., Klein, R., & Bass, S. (1999). Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: A prospective study in young male gymnasts. Journal of bone and mineral research, 14, 1222–1230. doi:10.1359/jbmr.1999.14.7.1222
  • Detter, F., Rosengren, B. E., Dencker, M., Lorentzon, M., Nilsson, J. A., & Karlsson, M. K. (2014). A 6-year exercise program improves skeletal traits without affecting fracture risk: A prospective controlled study in 2621 children. Journal of bone and mineral research, 29(6), 1325–1336. doi:10.1002/jbmr.2168
  • Dowthwaite, J. N., & Scerpella, T. A. (2011). Distal radius geometry and skeletal indices after peripubertal artistic gymnasts. Osteoporosis international, 22, 2205–2210. doi:10.1007/s00198-010-1233-2
  • Ducher, G., Bass, S. L., Saxon, L., & Daly, R. M. (2011). Effects of repetitive loading on the growth induced changes in bone mass and cortical bone geometry: A 12-month study in pre/peri- and postmenarcheal tennis players. Journal of bone and mineral research, 26, 1321–1329. doi:10.1002/jbmr.323
  • Erlandson, M. C., Kontulainen, S. A., & Baxter-Jones, A. D. G. (2011). Precompetitive and recreational gymnasts have greater bone density, mass, and estimated strength at the distal radius in young childhood. Osteoporosis international, 20(1), 75–84. doi:10.1007/s00198-010-1263-9
  • Erlandson, M. C., Kontulainen, S. A., Chilibeck, P. D., Arnold, C. M., Faulkner, R. A., & Baxter-Jones, A. D. G. (2012). Higher premenarcheal bone mass in elite gymnasts is maintained into young adulthood after long-term retirement from sport: A 14-year follow-up. Journal of Bone and Mineral Research, 27(1), 93–103. doi:10.1002/jbmr.514
  • Erlandson, M. C., Kontulainen, S. A., Chilibeck, P. D., Arnold, C. M., Faulkner, R. A., & Baxter-Jones, A. D. G. (2013). Former premenarcheal gymnasts exhibit site-specific skeletal benefits in adulthood after long-term retirement. Journal of bone and mineral research, 27(11), 2298–2305. doi:10.1002/jbmr.1689
  • Eser, P., Hill, B., Ducher, G., & Bass, S. (2009). Skeletal benefits after long-term retirement in former elite female gymnasts. Journal of bone and mineral research, 24, 1981–1988. doi:10.1359/jbmr.090521
  • Fritz, J., Rosengren, B. E., Dencker, M., Karlsson, C., & Karlsson, M. K. (2016). A seven-year physical activity intervention for children increased gains in bone mass and muscle strength. Acta paediatrica, 105, 1216–1224. doi:10.1111/apa.13440
  • Fuchs, R. K., Bauer, J. J., & Snow, C. M. (2001). Jumping improves hip and lumbar spine bone mass in prepubescent children: A randomized controlled trial. Journal of bone and mineral research, 16(1), 148–156. doi:10.1359/jbmr.2001.16.1.148
  • Garcia, A. W., Langenthal, C. R., Angulo-Barroso, R. M., & Gross, M. M. (2004). A comparison of accelerometers for predicting energy expenditure and vertical ground reaction force in school-aged children. Measurement in physical education and exercise science, 8(3), 119–144. doi:10.1207/s15327841mpee0803_1
  • Heinonen, A., Sievanen, H., Kannus, P., Oja, R., Pasenen, M., & Vuori, I. (2000). High-impact exercise and bones of growing girls: A 9-month controlled trial. Osteoporosis international, 11(12), 1010–1017. doi:10.1007/s001980070021
  • Ireland, A., Maden-Wilkinson, T., McPhee, J., Cooke, K., Narici, M., Degens, H., & Rittweger, J. (2013). Upper limb muscle-bone asymmetries and bone adaptation in elite youth tennis players. Medicine and science in sports and exercise, 45, 1749–1758. doi:10.1249/MSS.0b013e31828f882f
  • Janz, K. F., Rao, S., Baumann, H. J., & Schultz, J. L. (2003). Measuring children’s vertical ground reaction forces with accelerometry during walk, running and jumping: The Iowa bone development study. Pediatric exercise science, 15, 34–43. doi:10.1123/pes.15.1.34
  • Larsen, M. N., Nielsen, C. M., Helge, E. W., Madsen, M., Manniche, V., Hansen, L., … Krustrup, P. (2016). Positive effects on bone mineralization and muscular fitness after 10 months of intense school-based physical training for children aged 8-10 years: The FIT FIRST randomized controlled trial. British journal of sports medicine, 1–8. doi:10.1136/bsports-2016-096219
  • Lees, A. (1981). Methods of impact force absorption when landing from a jump. En Medica, 40, 653–663. doi:10.1243/emed_jour_1981_010_055_02
  • Linden, C., Ahlborg, H. G., Besjakov, J., Gardsell, P., & Karlsson, M. K. (2006). A school curriculum-based exercise program increase bone mineral accrual and bone size in prepubertal girls: Two-year data from the pediatric osteoporosis prevention (POP) study. Journal of bone and mineral research, 21(6), 829–835. doi:10.1359/jbmr.060304
  • Macdonald, H. M., Kontulainen, S. A., Khan, K. M., & McKay, H. A. (2007). Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? Journal of bone and mineral research, 22(3), 434–446. doi:10.1359/jbmr.061205
  • Malina, R. M. (1994). Physical growth and biological maturation of young athletes. In J. O. Holloszy (Ed.), Exerc Sport Sci Rev (pp. 389–433). Baltimore: Williams & Wilkins.
  • McKay, H. A., Tsang, G., Heinonen, A., MacKelvie, K., Sanderson, D., & Khan, K. M. (2005). Ground reaction forces associated with an effective elementary school based jumping intervention. British journal of sports medicine, 39(1), 10–14. doi:10.1136/bjsm.2003.008615
  • McNitt-Gray, J. L. (1991). Kinematics and impulse characteristics of drop landings from three heights. International Journal Sport Biomechanics, 7, 201–224. doi:10.1123/ijsb.7.2.201
  • Molenaar, H. M., Selles, R. W., Zuidam, J., Willemsen, S. P., Stam, H. J., & Hovius, S. E. R. (2010). Growth diagrams for grip strength in children. Clinical orthopaedics and related research, 468, 217–223. doi:10.1007/s11999-009-0881-z
  • Moore, S. A., McKay, H. A., Macdonald, H., Nettlefold, L., Baxter-Jones, A. D., Cameron, N., & Brasher, P. M. (2015). Enhancing a somatic maturity predication model. Medicine and science in sports and exercise, 47(8), 1755–1764. doi:10.1249/MSS.0000000000000588
  • Moustaki, M., Lariou, M., & Petridou, E. (2001). Cross country variation of fractures in childhood population. Is the origin biological or ‘accidental’? Injury prevention, 7, 77. doi:10.1136/ip.7.1.77
  • Nikander, R., Sievanen, H., Heinonen, A., Daly, R. M., Uusi-Rasi, K., & Kannus, P. (2010). Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimizing bone strength throughout life. BMC medicine, 8, 47. doi:10.1186/1741-7015-8-47
  • Osteoporosis Canada. (2015). Fracture incidence and costs by province [Internet]. Retrieved from: http://www.osteoporosis.ca/wp-content/uploads/Appendix-B.pdf
  • Polinder, S., Iordens, G. I. T., Panneman, M. J. M., Eygendaal, D., Patka, P., Den Hartog, D., & Van Lieshout, E. M. (2013). Trends in incidence and costs of injuries to the shoulder, arm and wrist in The Netherlands between 1986-2008. BMC Public Health, 13, 531. doi:10.1186/1471-2458-13-531
  • Russell, K., Schembri, G., & Kinsman, T. (2001). Up, Down, All Around: Gymnastics lessons plans (2nd ed.) Winnipeg, MB: Ruschkin Publishing. https://ruschkin.org/udaa-lesson-plans/
  • Swartz, E. E., Decoster, L. C., Russell, P. J., & Croce, R. V. (2005). Effects of developmental stage and sex on lower extremity kinematics and vertical ground reaction forces during landing. Journal of athletic training, 40(1), 9–14. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088348/
  • Tolonen, S., Sievanen, G., Mikkila, V., Telama, R., Oikonene, M., Laaksonen, M., … Raitakari, O. T. (2015). Adolescent physical activity is associated with higher tibial pQCT bone values in adulthood after 28-year of follow-up – The cardiovascular risk in Young Finns study. Bone, 75, 77–83. doi:10.1016/j.bone.2015.02.012
  • Tuner, C. H., & Robling, A. G. (2003). Designing exercise regimens to increase bone strength. Exercise and sport sciences reviews, 31(1), 45–50. doi:10.1097/00003677-200301000-00009
  • Veilleux, L. N., & Rauch, F. (2010). Reproducibility of jumping mechanography in healthy children and adults. Journal of musculoskeletal & neuronal interactions, 10(4), 256–266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.