1,591
Views
2
CrossRef citations to date
0
Altmetric
Sports Medicine and Biomechanics

Statistical shape modelling reveals differences in hamstring morphology between professional rugby players and sprinters

, , , , , & ORCID Icon show all
Pages 164-171 | Received 10 Jul 2022, Accepted 30 Mar 2023, Published online: 19 Apr 2023

References

  • Askling, C. M., Tengvar, M., Saartok, T., & Thorstensson, A. (2007). Acute first-time hamstring strains during high-speed running: A longitudinal study including clinical and magnetic resonance imaging findings. American Journal of Sports Medicine, 35(2), 197–206. PubMed PMID: 17170160. https://doi.org/10.1177/0363546506294679
  • Aziz, S., & Spinks, G. (2020). Torsional artificial muscles. Materials Horizons, 7(3), 667–693. https://doi.org/10.1039/C9MH01441A
  • Bahl, J. S., Zhang, J., Killen, B. A., Taylor, M., Solomon, L. B., Arnold, J. B., Lloyd, D. G., Besier, T. F., & Thewlis, D. (2019). Statistical shape modelling versus linear scaling: Effects on predictions of hip joint centre location and muscle moment arms in people with hip osteoarthritis. Journal of Biomechanics, 85, 164–172. https://doi.org/10.1016/j.jbiomech.2019.01.031
  • Bin Ghouth, S. G., Williams, S. A., Reid, S. L., Besier, T. F., & Handsfield, G. G. (2022). A statistical shape model of soleus muscle morphology in spastic cerebral palsy. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-11611-z
  • Blanc, R., Seiler, C., Székely, G., Nolte, L. -P., & Reyes, M. (2012). Statistical model based shape prediction from a combination of direct observations and various surrogates: Application to orthopaedic research. Medical Image Analysis, 16(6), 1156–1166. https://doi.org/10.1016/j.media.2012.04.004
  • Chumanov, E. S., Schache, A. G., Heiderscheit, B. C., & Thelen, D. G. (2012). Hamstrings are most susceptible to injury during the late swing phase of sprinting. British Journal of Sports Medicine, 46(2), 90. https://doi.org/10.1136/bjsports-2011-090176
  • Cootes, T. F., Cooper, D. H., Taylor, C. J., & Graham, J. (1992). Trainable method of parametric shape description. Image and Vision Computing, 10(5), 289–294. https://doi.org/10.1016/0262-8856(92)90044-4
  • De Smet, A. A., & Best, T. M. (2000). MR imaging of the distribution and location of acute hamstring injuries in athletes. AJR American Journal of Roentgenology, 174(2), 393–399. PubMed PMID: 10658712. https://doi.org/10.2214/ajr.174.2.1740393
  • Dryden, I., & Mardia, K. (1998). Statistical shape analysis. John Wiley and Sons.
  • Ekstrand, J., Bengtsson, H., Waldén, M., Davison, M., Khan, K. M., & Hägglund, M. (2023). Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men’s professional football: The UEFA Elite Club Injury Study from 2001/02 to 2021/22. British Journal of Sports Medicine, 57(5), 292–298. https://doi.org/10.1136/bjsports-2021-105407
  • Fernandez, J., Zhang, J., Heidlauf, T., Sartori, M., Besier, T., Röhrle, O., & Lloyd, D. (2016). Multiscale musculoskeletal modelling, data–model fusion and electromyography-informed modelling. Interface Focus, 6(2), 20150084. https://doi.org/10.1098/rsfs.2015.0084
  • Fiorentino, N. M., & Blemker, S. S. (2014). Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running. Journal of Biomechanics, 47(13), 3325–3333. PubMed PMID: 25189094; PubMed Central PMCID: PMCPMC4196999. https://doi.org/10.1016/j.jbiomech.2014.08.010
  • Grange, S., Reurink, G., Nguyen, A. Q., Riviera-Navarro, C., Foschia, C., Croisille, P., & Edouard, P. (2022). Location of hamstring injuries based on magnetic resonance imaging: a systematic review. Sports Health, 15(1), 19417381211071010. https://doi.org/10.1177/19417381211071010
  • Green, B., Bourne, M. N., van Dyk, N., & Pizzari, T. (2020). Recalibrating the risk of hamstring strain injury (HSI)-A 2020 systematic review and meta-analysis of risk factors for index and recurrent HSI in sport. British Journal of Sports Medicine, 54(18), 1081–1088. https://doi.org/10.1136/bjsports-2019-100983
  • Handsfield, G. G., Meyer, C. H., Hart, J. M., Abel, M. F., & Blemker, S. S. (2014). Relationships of 35 lower limb muscles to height and body mass quantified using MRI. Journal of Biomechanics, 47(3), 631–638. https://doi.org/10.1016/j.jbiomech.2013.12.002
  • Hegyi, A., Peter, A., Finni, T., & Cronin, N. J. (2018). Region‐dependent hamstrings activity in Nordic hamstring exercise and stiff‐leg deadlift defined with high‐density electromyography. Scandinavian Journal of Medicine & Science in Sports, 28(3), 992–1000. https://doi.org/10.1111/sms.13016
  • Heimann, T., & Meinzer, H. P. (2009). Statistical shape models for 3D medical image segmentation: A review. Medical Image Analysis, 13(4), 543–563. PubMed PMID: 19525140. https://doi.org/10.1016/j.media.2009.05.004
  • Horsman, M. K., Koopman, H. F., van der Helm FC, Prosé, L. P., Veeger, H., & van der Helm, F. C. T. (2007). Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clinical Biomechanics, 22(2), 239–247. https://doi.org/10.1016/j.clinbiomech.2006.10.003
  • Kawama, R., Okudaira, M., Shimasaki, T., Maemura, H., Tanigawa, S., & Nordez, A. (2021). Sub-elite sprinters and rugby players possess different morphological characteristics of the individual hamstrings and quadriceps muscles. PloS One, 16(10), e0259039. https://doi.org/10.1371/journal.pone.0259039
  • Kenneally Dabrowski, C., Brown, N. A. T., Serpell, B. G., Perriman, D., Spratford, W., Sutherland, A., Pickering, M., & Lai, A. K. M. (2023). Hamstring musculotendon mechanics of prospectively injured elite rugby athletes. Research in Sports Medicine, 1–12. https://doi.org/10.1080/15438627.2023.2189115
  • Kenneally Dabrowski, C., Serpell, B. G., Spratford, W., Lai, A. K., Field, B., Brown, N. A., Thomson, M., & Perriman, D. (2019). A retrospective analysis of hamstring injuries in elite rugby athletes: More severe injuries are likely to occur at the distal myofascial junction. Physical Therapy in Sport: Official Journal of the Association of Chartered Physiotherapists in Sports Medicine, 38, 192–198. https://doi.org/10.1016/j.ptsp.2019.05.009
  • Koulouris, G., & Connell, D. Evaluation of the hamstring muscle complex following acute injury. (2003). Skeletal Radiology, 32(10), 582–589. PubMed PMID: 12942206. https://doi.org/10.1007/s00256-003-0674-5
  • Lee, S. -L., Tan, E., Khullar, V., Gedroyc, W., Darzi, A., & Yang, G. -Z. (2009). Physical-based statistical shape modeling of the levator ani. IEEE Transactions on Medical Imaging, 28(6), 926–936. https://doi.org/10.1109/TMI.2009.2012894
  • Lynch, J. T., Schneider, M. T. Y., Perriman, D. M., Scarvell, J. M., Pickering, M. R., Asikuzzaman, M., Galvin, C. R., Besier, T. F., & Smith, P. N. (2019). Statistical shape modelling reveals large and distinct subchondral bony differences in osteoarthritic knees. Journal of Biomechanics, 93, 177–184. Epub 2019/07/23 PubMed PMID: 31327525. https://doi.org/10.1016/j.jbiomech.2019.07.003
  • Mendez-Villanueva, A., Suarez-Arrones, L., Rodas, G., Fernandez-Gonzalo, R., Tesch, P., Linnehan, R., Kreider, R., & DiSalvo, V. (2016). MRI-based regional muscle use during hamstring strengthening exercises in elite soccer players. PloS One, 11(9), e0161356. https://doi.org/10.1371/journal.pone.0161356
  • Modenese, L., & Kohout, J. (2020). Automated generation of three-dimensional complex muscle geometries for use in personalised musculoskeletal models. Annals of Biomedical Engineering, 48(6), 1793–1804. https://doi.org/10.1007/s10439-020-02490-4
  • Neogi, T., Bowes, M., Niu, J., De Souza, K., Vincent, G., Goggins, J., Zhang, Y., & Felson, D. T. (2013). MRI-based three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: Data from the Osteoarthritis Initiative. Arthritis and Rheumatism, 65(8), 2048. https://doi.org/10.1002/art.37987
  • Pedoia, V., Lansdown, D. A., Zaid, M., McCulloch, C. E., Souza, R., Ma, C. B., & Li, X. (2015). Three-dimensional MRI-based statistical shape model and application to a cohort of knees with acute ACL injury. Osteoar Cartil, 23(10), 1695–1703. https://doi.org/10.1016/j.joca.2015.05.027
  • Polamalu, S. K., Musahl, V., & Debski, R. E. (2022). Tibiofemoral bony morphology features associated with ACL injury and sex utilizing three‐dimensional statistical shape modeling. Journal of Orthopaedic Research®, 40(1), 87–94. https://doi.org/10.1002/jor.24952
  • Sarkalkan, N., Weinans, H., & Zadpoor, A. A. (2014). Statistical shape and appearance models of bones. Bone, 60, 129–140. https://doi.org/10.1016/j.bone.2013.12.006
  • Saxby, D. J., Killen, B. A., Pizzolato, C., Carty, C., Diamond, L., Modenese, L., Fernandez, J., Davico, G., Barzan, M., Lenton, G., da Luz, S. B., Suwarganda, E., Devaprakash, D., Korhonen, R. K., Alderson, J. A., Besier, T. F., Barrett, R. S., & Lloyd, D. G. (2020). Machine learning methods to support personalized neuromusculoskeletal modelling. Biomechanics and Modeling in Mechanobiology, 19(4), 1169–1185. https://doi.org/10.1007/s10237-020-01367-8
  • Schache, A. G., Dorn, T. W., Blanch, P. D., Brown, N. A., & Pandy, M. G. (2012). Mechanics of the human hamstring muscles during sprinting. Medicine & Science in Sports & Exercise, 44(4), 647–658. PubMed PMID: 21912301. https://doi.org/10.1249/MSS.0b013e318236a3d2
  • Schache, A. G., Kim, H. -J., Morgan, D. L., & Pandy, M. G. (2010). Hamstring muscle forces prior to and immediately following an acute sprinting-related muscle strain injury. Gait & Posture, 32(1), 136–140. https://doi.org/10.1016/j.gaitpost.2010.03.006
  • Schoenfeld, B. J., Contreras, B., Tiryaki-Sonmez, G., Wilson, J. M., Kolber, M. J., & Peterson, M. D. (2015). Regional differences in muscle activation during hamstrings exercise. Journal of Strength and Conditioning Research / National Strength & Conditioning Association, 29(1), 159–164. https://doi.org/10.1519/JSC.0000000000000598
  • Shaparenko, P., Krisiuk, A., Goncharuk, V., & Goncharuk, V. P. (1996). The principle of the spiral-like structure of skeletal muscles–the basis for motor optimal performance of the active lower extremity. Morfologiia (Saint Petersburg, Russia), 109(1), 71–75.
  • Shaparenko, P., & Pshenichnyĭ, N. (1988). Principle of spiral arrangement of the skeletal muscles of humans and animals. Arkhiv anatomii, gistologii i embriologii, 94(6), 55–59.
  • van Buuren M, Arden, N. K., Bierma-Zeinstra, S., Bramer, W. M., Casartelli, N., Felson, D., van Buuren, M. M. A., Jones, G., Lane, N. E., Lindner, C., Maffiuletti, N. A., van Meurs, J. B. J., Nelson, A. E., Nevitt, M. C., Valenzuela, P. L., Verhaar, J. A. N., Weinans, H., & Agricola, R. (2021). Statistical shape modeling of the hip and the association with hip osteoarthritis: A systematic review. Osteoar Cartil, 29(5), 607–618. https://doi.org/10.1016/j.joca.2020.12.003
  • Vrancken, A., Crijns, S., Ploegmakers, M., O’kane, C., van Tienen, T. G., Janssen, D., Buma, P., & Verdonschot, N. (2014). 3D geometry analysis of the medial meniscus–a statistical shape modeling approach. Journal of Anatomy, 225(4), 395–402. https://doi.org/10.1111/joa.12223
  • Wakahara, T., Fukutani, A., Kawakami, Y., & Yanai, T. (2013). Nonuniform muscle hypertrophy: Its relation to muscle activation in training session. Medicine and Science in Sports and Exercise, 45(11), 2158–2165. https://doi.org/10.1249/MSS.0b013e3182995349
  • Zhang, J., Ackland, D., & Fernandez, J. (2018). Point-cloud registration using adaptive radial basis functions. Computer Methods in Biomechanics and Biomedical Engineering, 21(7), 498–502. https://doi.org/10.1080/10255842.2018.1484914
  • Zhang, J., Malcolm, D., Hislop-Jambrich, J., Thomas, C. M., & Nielsen, D. (2014). An anatomical region-based statistical shape model of the human femur. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2(3), 176–185. https://doi.org/10.1080/21681163.2013.878668