427
Views
2
CrossRef citations to date
0
Altmetric
Sports Medicine and Biomechanics

Lower-limb wearable resistance overloads joint angular velocity during early acceleration sprint running

, , , , , , , , , , & show all
Pages 326-332 | Received 30 Sep 2022, Accepted 24 Apr 2023, Published online: 14 May 2023

References

  • Besier, T. F., Sturnieks, D. L., Alderson, J. A., & Lloyd, D. G. (2003). Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. Journal of Biomechanics, 36(8), 1159–1168. https://doi.org/10.1016/S0021-9290(03)00087-3
  • Bustos, A., Metral, G., Cronin, J., Uthoff, A., & Dolcetti, J. (2020). Effects of warming up with lower-body wearable resistance on physical performance measures in soccer players over an 8-week training cycle. Journal of Strength & Conditioning Research, 34(5), 1220–1226. https://doi.org/10.1519/JSC.0000000000003498
  • Clark, K. P., Meng, C. R., & Stearne, D. J. (2020). ‘Whip from the hip’: Thigh angular motion, ground contact mechanics, and running speed. Biology Open, 9(10), bio053546. https://doi.org/10.1242/bio.053546
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
  • Dolcetti, J. C., Cronin, J. B., Macadam, P., & Feser, E. H. (2019). Wearable resistance training for speed and agility. Strength & Conditioning Journal, 41(4), 105–111. https://doi.org/10.1519/SSC.0000000000000436
  • Feser, E. H., Bayne, H., Loubser, I., Bezodis, N. E., & Cronin, J. B. (2020). Wearable resistance sprint running is superior to training with no load for retaining performance in pre-season training for rugby athletes. European Journal of Sport Science, 21(7), 967–975. https://doi.org/10.1080/17461391.2020.1802516
  • Feser, E. H., Macadam, P., & Cronin, J. B. (2020). The effects of lower limb wearable resistance on sprint running performance: A systematic review. European Journal of Sport Science, 20(3), 394–406. https://doi.org/10.1080/17461391.2019.1629631
  • Hurst, O., Kilduff, L. P., Johnston, M., Cronin, J. B., & Bezodis, N. E. (2020). Acute effects of wearable thigh and shank loading on spatiotemporal and kinematic variables during maximal velocity sprinting. Sports Biomechanics / International Society of Biomechanics in Sports, 21(10), 1234–1248. https://doi.org/10.1080/14763141.2020.1748099
  • Macadam, P. (2020, August 14). Email correspondance.
  • Macadam, P., Cronin, J., & Simperingham, K. (2017). The effects of wearable resistance training on metabolic, kinematic and kinetic variables during walking, running, sprint running and jumping: A systematic review. Sports Medicine, 47(5), 887–906. https://doi.org/10.1007/s40279-016-0622-x
  • Macadam, P., Cronin, J. B., Uthoff, A. M., & Feser, E. H. (2019). The effects of different wearable resistance placements on sprint-running performance: A review and practical applications. Strength & Conditioning Journal, 41(3), 1524–1602. https://doi.org/10.1519/SSC.0000000000000444
  • Macadam, P., Cronin, J. B., Uthoff, A. M., Nagahara, R., Zois, J., Diewald, S., Tinwala, F., & Neville, J. (2020). Thigh loaded wearable resistance increases sagittal plane rotational work of the thigh resulting in slower 50-m sprint times. Sports Biomechanics / International Society of Biomechanics in Sports, 21(10), 1291–1302. https://doi.org/10.1080/14763141.2020.1762720
  • Macadam, P., Nuell, S., Cronin, J. B., Uthoff, A. M., Nagahara, R., Neville, J., Graham, S. P., & Tinwala, F. (2020). Thigh positioned wearable resistance affects step frequency not step length during 50 m sprint-running. European Journal of Sport Science, 20(4), 444–451. https://doi.org/10.1080/17461391.2019.1641557
  • Nagahara, R., Matsubayashi, T., Matsuo, A., & Zushi, K. (2014). Kinematics of transition during human accelerated sprinting. Biology Open, 3(8), 689–699. https://doi.org/10.1242/bio.20148284
  • Winter, D. (2009). Biomechanics and motor control of human movement. John Wiley & Sons, Inc.
  • Zhang, C., Yu, B., Yang, C., Yu, J., Sun, Y., Wang, D., Yin, K., Zhuang, W., & Liu, Y. (2019). Effects of shank mass manipulation on sprinting techniques. Sports Biomechanics / International Society of Biomechanics in Sports, 21(2), 142–154. https://doi.org/10.1080/14763141.2019.1646796