754
Views
0
CrossRef citations to date
0
Altmetric
Sports Performance

Comparison of kinematics and kinetics between unassisted and assisted maximum speed sprinting

ORCID Icon, , &
Pages 2169-2175 | Received 21 Mar 2023, Accepted 30 Jan 2024, Published online: 22 Feb 2024

References

  • Cecilia-Gallego, P., Odriozola, A., Beltran-Garrido, J. V., & Álvarez-Herms, J. (2022). Acute effects of overspeed stimuli with towing system on athletic sprint performance: A systematic review with meta-analysis. Journal of Sports Sciences, 40(6), 704–716. https://doi.org/10.1080/02640414.2021.2015165
  • Clark, K., Cahill, M., Korfist, C., & Whitacre, T. (2021). Acute kinematic effects of sprinting with motorized assistance. The Journal of Strength & Conditioning Research, 35(7), 1856–1864. https://doi.org/10.1519/JSC.0000000000003051
  • Clark, K. P., Meng, C. R., & Stearne, D. J. (2020). ‘Whip from the hip’: Thigh angular motion, ground contact mechanics, and running speed. Biology Open, 9(10). https://doi.org/10.1242/bio.053546
  • Clark, K. P., Ryan, L. J., & Weyand, P. G. (2017). A general relationship links gait mechanics and running ground reaction forces. Journal of Experimental Biology, 220(2), 247–258. https://doi.org/10.1242/jeb.138057
  • Clark, D. A., Sabick, M. B., Pfeiffer, R. P., Kuhlman, S. M., Knigge, N. A., & Shea, K. G. (2009). Influence of towing force magnitude on the kinematics of supramaximal sprinting. The Journal of Strength & Conditioning Research, 23(4), 1162–1168. https://doi.org/10.1519/JSC.0b013e318194df84
  • Colyer, S. L., Nagahara, R., Takai, Y., & Salo, A. I. (2018). How sprinters accelerate beyond the velocity plateau of soccer players: Waveform analysis of ground reaction forces. Scandinavian Journal of Medicine & Science in Sports, 28(12), 2527–2535. https://doi.org/10.1111/sms.13302
  • Dorn, T. W., Schache, A. G., & Pandy, M. G. (2012). Muscular strategy shift in human running: Dependence of running speed on hip and ankle muscle performance. Journal of Experimental Biology, 215(11), 1944–1956. https://doi.org/10.1242/jeb.064527
  • Gleadhill, S., & Nagahara, R. (2021). Kinetic and kinematic determinants of female sprint performance. Journal of Sports Sciences, 39(6), 609–617. https://doi.org/10.1080/02640414.2020.1837449
  • Gleadhill, S., & Nagahara, R. (2022). Kinetic and kinematic changes during resisted sprinting due to towing three common parachute sizes. The Journal of Sports Medicine and Physical Fitness, 63(2). https://doi.org/10.23736/S0022-4707.22.14068-5
  • Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3. https://doi.org/10.1249/MSS.0b013e31818cb278
  • Kakehata, G., Goto, Y., Iso, S., & Kanosue, K. (2021). Timing of rectus femoris and biceps femoris muscle activities in both legs at maximal running speed. Medicine and Science in Sports and Exercise, 53(3), 643. https://doi.org/10.1249/MSS.0000000000002497
  • Mero, A., & Komi, P. V. (1986). Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters. European Journal of Applied Physiology and Occupational Physiology, 55(5), 553–561. https://doi.org/10.1007/BF00421652
  • Mero, A., & Komi, P. V. (1987). Electromyographic activity in sprinting at speeds ranging from sub-maximal to supra-maximal. Medicine and Science in Sports and Exercise, 19(3), 266–274. https://doi.org/10.1249/00005768-198706000-00014
  • Mero, A., Komi, P., Rusko, H., & Hirvonen, J. (1987). Neuromuscular and anaerobic performance of sprinters at maximal and supramaximal speed. International Journal of Sports Medicine, 8(S 1), S55–S60. https://doi.org/10.1055/s-2008-1025704
  • Miyashiro, K., Nagahara, R., Yamamoto, K., & Nishijima, T. (2019). Kinematics of maximal speed sprinting with different running speed, leg length, and step characteristics. Frontiers in Sports and Active Living, 1, 37. https://doi.org/10.3389/fspor.2019.00037
  • Morin, J. B., Slawinski, J., Dorel, S., Couturier, A., Samozino, P., Brughelli, M., & Rabita, G. (2015). Acceleration capability in elite sprinters and ground impulse: Push more, brake less? Journal of Biomechanics, 48(12), 3149–3154. https://doi.org/10.1016/j.jbiomech.2015.07.009
  • Mukaka, M. M. (2012). Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal: The Journal of Medical Association of Malawi, 24(3), 69–71.
  • Murata, M., Takai, Y., Kanehisa, H., Fukunaga, T., & Nagahara, R. (2018). Spatiotemporal and kinetic determinants of sprint acceleration performance in soccer players. Sports, 6(4), 169. https://doi.org/10.3390/sports6040169
  • Nagahara, R., Kanehisa, H., & Fukunaga, T. (2020). Ground reaction force across the transition during sprint acceleration. Scandinavian Journal of Medicine & Science in Sports, 30(3), 450–461. https://doi.org/10.1111/sms.13596
  • Nagahara, R., Matsubayashi, T., Matsuo, A., & Zushi, K. (2014). Kinematics of transition during human accelerated sprinting. Biology Open, 3(8), 689–699. https://doi.org/10.1242/bio.20148284
  • Nagahara, R., Mizutani, M., Matsuo, A., Kanehisa, H., & Fukunaga, T. (2017). Association of step width with accelerated sprinting performance and ground reaction force. International Journal of Sports Medicine, 38(7), 534–540. https://doi.org/10.1055/s-0043-106191
  • Nagahara, R., Mizutani, M., Matsuo, A., Kanehisa, H., & Fukunaga, T. (2018). Association of sprint performance with ground reaction forces during acceleration and maximal speed phases in a single sprint. Journal of Applied Biomechanics, 34(2), 104–110. https://doi.org/10.1123/jab.2016-0356
  • Rakovic, E., Paulsen, G., Helland, C., Haugen, T., & Eriksrud, O. (2022). Validity and Reliability of a Motorized Sprint Resistance Device. Journal of Strength & Conditioning Research, 36(8), 2335–2338. https://doi.org/10.1519/JSC.0000000000003830
  • Rumpf, M. C., Lockie, R. G., Cronin, J. B., & Jalilvand, F. (2016). Effect of different sprint training methods on sprint performance over various distances: A brief review. Journal of Strength and Conditioning Research, 30(6), 1767–1785. https://doi.org/10.1519/JSC.0000000000001245
  • Sedlacek, J., Krska, P., & Kostial, J. (2015). Use of supra-maximal speed mean in maximal running speed depment. Gymnasium, 16(1), 39–50.
  • Stoyanov, H. (2019). Effect of assisted training on the special running preparation of junior sprinters for 100 and 200 m. Human Sport Medicine, 19(3), 74–79. https://doi.org/10.14529/hsm190309
  • Van den Tillaar, R., & Gamble, P. (2017). Comparison of step-by-step kinematics of resisted, normal and assisted 30 m sprints in experienced sprinters. Translational Sports Medicine, 1(4), 151–159. https://doi.org/10.1002/tsm2.27
  • Van den Tillaar, R., & Gamble, P. (2018). Comparison of step‐by‐step kinematics and muscle activation of resisted, assisted, and unloaded 30‐m sprints in sprinters. Translational Sports Medicine, 1(4), 151–159. https://doi.org/10.1002/tsm2.27
  • Van den Tillaar, R., & Mirkov, D. (2021). Comparison of development of step-kinematics of assisted 60 m sprints with different pulling forces between experienced male and female sprinters. PloS One, 16(7), e0255302. https://doi.org/10.1371/journal.pone.0255302
  • Van Emmerik, R. E., & van Wegen, E. E. (2000). On variability and stability in human movement. Journal of Applied Biomechanics, 16(4), 394–406. https://doi.org/10.1123/jab.16.4.394
  • Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., & Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of Applied Physiology, 89(5), 1991–1999. https://doi.org/10.1152/jappl.2000.89.5.1991
  • Yusaku, S., & Junichiro, A. (2008). Effects of supramaximal running on stride frequency and stride length in sprinters. Advances in Exercise and Sports Physiology, 14(1), 9–17.