1,633
Views
0
CrossRef citations to date
0
Altmetric
Sports Medicine and Biomechanics

Eight-week neuromuscular electrical stimulation training produces muscle strength gains and hypertrophy, and partial muscle quality improvement in the knee extensors

ORCID Icon, , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2209-2228 | Received 30 Jul 2023, Accepted 07 Feb 2024, Published online: 23 Feb 2024

References

  • Akagi, R., Nomura, Y., Kawashima, C., Ito, M., Oba, K., Tsuchiya, Y., Power, G. A., & Hirata, K. (2022). Trade-off between maximal power output and fatigue resistance of the knee extensors for older men. Journal of Aging and Physical Activity, 30(6), 1003–1013. https://doi.org/10.1123/japa.2021-0384
  • Akagi, R., Sato, S., Hirata, N., Imaizumi, N., Tanimoto, H., Ando, R., Ema, R., & Hirata, K. (2020). Eight-week low-intensity squat training at slow speed simultaneously improves knee and hip flexion and extension strength. Frontiers in Physiology, 11, 893. https://doi.org/10.3389/fphys.2020.00893
  • Akagi, R., Suzuki, M., Kawaguchi, E., Miyamoto, N., Yamada, Y., & Ema, R. (2018). Muscle size-strength relationship including ultrasonographic echo intensity and voluntary activation level of a muscle group. Archives of Gerontology and Geriatrics, 75, 185–190. https://doi.org/10.1016/j.archger.2017.12.012
  • Akagi, R., Takai, Y., Ohta, M., Kanehisa, H., Kawakami, Y., & Fukunaga, T. (2009). Muscle volume compared to cross-sectional area is more appropriate for evaluating muscle strength in young and elderly individuals. Age & Ageing, 38(5), 564–569. https://doi.org/10.1093/ageing/afp122
  • Almeida, G. J., Khoja, S. S., & Piva, S. R. (2019). Dose-response relationship between neuromuscular electrical stimulation and muscle function in people with rheumatoid arthritis. Physical Therapy, 99(9), 1167–1176. https://doi.org/10.1093/ptj/pzz079
  • Ando, R., Saito, A., Umemura, Y., & Akima, H. (2015). Local architecture of the vastus intermedius is a better predictor of knee extension force than that of the other quadriceps femoris muscle heads. Clinical Physiology and Functional Imaging, 35(5), 376–382. https://doi.org/10.1111/cpf.12173
  • Ando, R., Sato, S., Hirata, N., Tanimoto, H., Imaizumi, N., Suzuki, Y., Hirata, K., & Akagi, R. (2021). Relationship between resting medial gastrocnemius stiffness and drop jump performance. Journal of Electromyography and Kinesiology, 58, 102549. https://doi.org/10.1016/j.jelekin.2021.102549
  • Bali, A. U., Harmon, K. K., Burton, A. M., Phan, D. C., Mercer, N. E., Lawless, N. W., & Stock, M. S. (2020). Muscle strength, not age, explains unique variance in echo intensity. Experimental Gerontology, 139, 111047. https://doi.org/10.1016/j.exger.2020.111047
  • Bernabei, M., Lee, S. S. M., Perreault, E. J., & Sandercock, T. G. (2020). Shear wave velocity is sensitive to changes in muscle stiffness that occur independently from changes in force. Journal of Applied Physiology, 128(1), 8–16. https://doi.org/10.1152/japplphysiol.00112.2019
  • Caresio, C., Molinari, F., Emanuel, G., & Minetto, M. A. (2015). Muscle echo intensity: Reliability and conditioning factors. Clinical Physiology and Functional Imaging, 35(5), 393–403. https://doi.org/10.1111/cpf.12175
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.
  • Dankel, S. J., & Razzano, B. M. (2020). The impact of acute and chronic resistance exercise on muscle stiffness: A systematic review and meta-analysis. Journal of Ultrasound, 23(4), 473–480. https://doi.org/10.1007/s40477-020-00486-3
  • Ema, R. (2023). Association between elastography-assessed muscle mechanical properties and high-speed dynamic performance. European Journal of Sport Science, 23(7), 1233–1239. https://doi.org/10.1080/17461391.2022.2097129
  • Ema, R., Saito, I., & Akagi, R. (2018). Neuromuscular adaptations induced by adjacent joint training. Scandinavian Journal of Medicine & Science in Sports, 28(3), 947–960. https://doi.org/10.1111/sms.13008
  • Erskine, R. M., Fletcher, G., & Folland, J. P. (2014). The contribution of muscle hypertrophy to strength changes following resistance training. European Journal of Applied Physiology, 114(6), 1239–1249. https://doi.org/10.1007/s00421-014-2855-4
  • Gondin, J., Guette, M., Ballay, Y., & Martin, A. (2005). Electromyostimulation training effects on neural drive and muscle architecture. Medicine and Science in Sports and Exercise, 37(8), 1291–1299. https://doi.org/10.1249/01.mss.0000175090.49048.41
  • Gondin, J., Guette, M., Ballay, Y., & Martin, A. (2006). Neural and muscular changes to detraining after electrostimulation training. European Journal of Applied Physiology, 97(2), 165–173. https://doi.org/10.1007/s00421-006-0159-z
  • Gorgey, A. S., Caudill, C., & Khalil, R. E. (2016). Effects of once weekly NMES training on knee extensors fatigue and body composition in a person with spinal cord injury. The Journal of Spinal Cord Medicine, 39(1), 99–102. https://doi.org/10.1179/2045772314Y.0000000293
  • Hamada, R., Sato, S., Miyasaka, J., Murao, M., Matsushita, M., Kajimoto, T., Otagaki, A., Asano, T., Nankaku, M., Kondo, T., Arai, Y., Kanda, J., Takaori-Kondo, A., Ikeguchi, R., & Matsuda, S. (2023). Belt electrode-skeletal muscle electrical stimulation during early hematopoietic post-transplantation to prevent skeletal muscle atrophy and weakness. Transplantation and Cellular Therapy, 29(1),.e51.1–.e51.7. https://doi.org/10.1016/j.jtct.2022.09.030
  • Hasegawa, S., Kobayashi, M., Arai, R., Tamaki, A., Nakamura, T., & Moritani, T. (2011). Effect of early implementation of electrical muscle stimulation to prevent muscle atrophy and weakness in patients after anterior cruciate ligament reconstruction. Journal of Electromyography and Kinesiology, 21(4), 622–630. https://doi.org/10.1016/j.jelekin.2011.01.005
  • Hioki, M., Takahashi, H., Saito, A., Imai, M., & Yasuda, H. (2023). Effect of electromyostimulation training on intramuscular fat accumulation determined by ultrasonography in older adults. European Journal of Applied Physiology, 123(2), 271–282. https://doi.org/10.1007/s00421-022-05074-3
  • Hirata, K., Ito, M., Nomura, Y., Kawashima, C., Tsuchiya, Y., Ooba, K., Yoshida, T., Yamada, Y., Power, G. A., Tillin, N. A., & Akagi, R. (2022). Muscle quality indices separately associate with joint-level power-related measures of the knee extensors in older males. European Journal of Applied Physiology, 122(10), 2271–2281. https://doi.org/10.1007/s00421-022-05005-2
  • Hirata, K., Yamadera, R., & Akagi, R. (2020). Can static stretching reduce stiffness of the triceps surae in older men? Medicine and Science in Sports and Exercise, 52(3), 673–679. https://doi.org/10.1249/MSS.0000000000002186
  • Honda, Y., Tanaka, N., Kajiwara, Y., Kondo, Y., Kataoka, H., Sakamoto, J., Akimoto, R., Nawata, A., Okita, M., & Gomes, A. V. (2021). Effect of belt electrode-skeletal muscle electrical stimulation on immobilization-induced muscle fibrosis. PLOS ONE, 16(5), e0244120. https://doi.org/10.1371/journal.pone.0244120
  • Labanca, L., Rocchi, J. E., Giannini, S., Faloni, E. R., Montanari, G., Mariani, P. P., & Macaluso, A. (2022). Early superimposed NMES training is effective to improve strength and function following ACL reconstruction with hamstring graft regardless of tendon regeneration. Journal of Sports Science and Medicine, 21, 91–103. https://doi.org/10.52082/jssm.2022.91
  • Lategan, L., Crafford, K., Suliman, F., & Govender, N. (2014). Electrical muscle stimulation (EMS) training of the hamstrings. African Journal for Physical Health Education, Recreation and Dance, 20(21), 439–452. https://hdl.handle.net/10520/EJC155181
  • Lyden, K., Kozey, S. L., Staudenmeyer, J. W., & Freedson, P. S. (2011). A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. European Journal of Applied Physiology, 111(2), 187–201. https://doi.org/10.1007/s00421-010-1639-8
  • Maffiuletti, N. A., Pensini, M., & Martin, A. (2002). Activation of human plantar flexor muscles increases after electromyostimulation training. Journal of Applied Physiology, 92(4), 1383–1392. https://doi.org/10.1152/japplphysiol.00884.2001
  • Marusich, L. R., & Bakdash, J. Z. (2021). rmcorrShiny: A web and standalone application for repeated measures correlation. F1000 Research, 10, 697. https://doi.org/10.12688/f1000research.55027.1
  • Mazzoli, D., Giannotti, E., Manca, M., Longhi, M., Prati, P., Cosma, M., Ferraresi, G., Morelli, M., Zerbinati, P., Masiero, S., & Merlo, A. (2018). Electromyographic activity of the vastus intermedius muscle in patients with stiff-knee gait after stroke. A retrospective observational study. Gait & Posture, 60, 273–278. https://doi.org/10.1016/j.gaitpost.2017.07.002
  • Miyamoto, N., Hirata, K., Inoue, K., & Hashimoto, T. (2019). Muscle stiffness of the vastus lateralis in sprinters and long-distance runners. Medicine and Science in Sports and Exercise, 51(10), 2080–2087. https://doi.org/10.1249/MSS.0000000000002024
  • Moritani, T. (2021). Electrical muscle stimulation: Application and potential role in aging society. Journal of Electromyography and Kinesiology, 61, 102598. https://doi.org/10.1016/j.jelekin.2021.102598
  • Morris, S. B. (2008). Estimating effect sizes from pretest-posttest-control group designs. Organizational Research Methods, 11(2), 364–386. https://doi.org/10.1177/1094428106291059
  • Mota, J. A., & Stock, M. S. (2017). Rectus femoris echo intensity correlates with muscle strength, but not endurance, in younger and older men. Ultrasound in Medicine and Biology, 43(8), 1651–1657. https://doi.org/10.1016/j.ultrasmedbio.2017.04.010
  • Mukherjee, S., Fok, J. R., & van Mechelen, W. (2023). Electrical stimulation and muscle strength gains in healthy adults: A systematic review. Journal of Strength & Conditioning Research, 37(4), 938–950. https://doi.org/10.1519/JSC.0000000000004359
  • Nishikawa, Y., Sakaguchi, H., Kawade, S., Maeda, N., Tanaka, S., & Hyngstrom, A. (2023). Electrical muscle stimulation in young adults: effect of muscle volume on brain-derived neurotrophic factor levels. European Journal of Applied Physiology, 123(2), 361–366. https://doi.org/10.1007/s00421-022-05078-z
  • Nordez, A., & Hug, F. (2010). Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level. Journal of Applied Physiology, 108(5), 1389–1394. https://doi.org/10.1152/japplphysiol.01323.2009
  • Paillard, T. (2008). Combined application of neuromuscular electrical stimulation and voluntary muscular contractions. Sports Medicine, 38(2), 161–177. https://doi.org/10.2165/00007256-200838020-00005
  • Rahmati, M., Gondin, J., & Malakoutinia, F. (2021). Effects of neuromuscular electrical stimulation on quadriceps muscle strength and mass in healthy young and older adults: a scoping review. Physical Therapy, 101(9), zab144. https://doi.org/10.1093/ptj/pzab144
  • Rech, A., Radaelli, R., Goltz, F. R., da Rosa, L. H., Schneider, C. D., & Pinto, R. S. (2014). Echo intensity is negatively associated with functional capacity in older women. Age (Dordr), 36(5), 9708. https://doi.org/10.1007/s11357-014-9708-2
  • Santos, R., Valamatos, M. J., Mil-Homens, P., & Armada-da-Silva, P. A. S. (2018). Muscle thickness and echo-intensity changes of the quadriceps femoris muscle during a strength training program. Radiography (Lond), 24(4), e75–e84. https://doi.org/10.1016/j.radi.2018.03.010
  • Snyder-Mackler, L., Delitto, A., Stralka, S. W., & Bailey, S. L. (1994). Use of electrical stimulation to enhance recovery of quadriceps femoris muscle force production in patients following anterior cruciate ligament reconstruction. Physical Therapy, 74(10), 901–907. https://doi.org/10.1093/ptj/74.10.901
  • Son, J., Lee, D., & Kim, Y. (2014). Effects of involuntary eccentric contraction training by neuromuscular electrical stimulation on the enhancement of muscle strength. Clinical Biomechanics, 29(7), 767–772. https://doi.org/10.1016/j.clinbiomech.2014.06.003
  • Sterczala, A. J., Miller, J. D., Dimmick, H. L., Wray, M. E., Trevino, M. A., & Herda, T. J. (2020). Eight weeks of resistance training increases strength, muscle cross-sectional area and motor unit size, but does not alter firing rates in the vastus lateralis. European Journal of Applied Physiology, 120(1), 281–294. https://doi.org/10.1007/s00421-019-04273-9
  • Stevens-Lapsley, J. E., Balter, J. E., Wolfe, P., Eckhoff, D. G., & Kohrt, W. M. (2012). Early neuromuscular electrical stimulation to improve quadriceps muscle strength after total knee arthroplasty: A randomized controlled trial. Physical Therapy, 92(2), 210–226. https://doi.org/10.2522/ptj.20110124
  • Stock, M. S., & Thompson, B. J. (2021). Echo intensity as an indicator of skeletal muscle quality: Applications, methodology, and future directions. European Journal of Applied Physiology, 121(2), 369–380. https://doi.org/10.1007/s00421-020-04556-6
  • Tomida, K., & Nakae, H. (2020). Efficacy of belt electrode skeletal muscle electrical stimulation on muscle flexibility of lower limbs: A randomized controlled pilot trial. Medicine, 99(47), e23156. https://doi.org/10.1097/MD.0000000000023156
  • Veldman, M. P., Gondin, J., Place, N., & Maffiuletti, N. A. (2016). Effects of neuromuscular electrical stimulation training on endurance performance. Frontiers in Physiology, 7, 544. https://doi.org/10.3389/fphys.2016.00544
  • Vitry, F., Martin, A., & Papaiordanidou, M. (2019). Torque gains and neural adaptations following low-intensity motor nerve electrical stimulation training. Journal of Applied Physiology, 127(5), 1469–1477. https://doi.org/10.1152/japplphysiol.00513.2019
  • Wakahara, T., Shiraogawa, A., & Eynon, N. (2019). Effects of neuromuscular electrical stimulation training on muscle size in collegiate track and field athletes. PLOS ONE, 14(11), e0224881. https://doi.org/10.1371/journal.pone.0224881
  • Ward, S. R., & Lieber, R. L. (2005). Density and hydration of fresh and fixed human skeletal muscle. Journal of Biomechanics, 38(11), 2317–2320. https://doi.org/10.1016/j.jbiomech.2004.10.001
  • Watanabe, D., Yoshida, T., Watanabe, Y., Yamada, Y., Kimura, M., & Group, K. S. (2020). Objectively measured daily step counts and prevalence of frailty in 3,616 older adults. Journal of the American Geriatrics Society, 68(10), 2310–2318. https://doi.org/10.1111/jgs.16655
  • Wilhelm, E. N., Rech, A., Minozzo, F., Radaelli, R., Botton, C. E., & Pinto, R. S. (2014). Relationship between quadriceps femoris echo intensity, muscle power, and functional capacity of older men. Age (Dordr), 36(3), 9625. https://doi.org/10.1007/s11357-014-9625-4
  • Yoshiko, A., Watanabe, K., & Akima, H. (2023). Relative contribution of neuromuscular activation, muscle size, and muscle quality to maximum strength output of the thigh muscles in young individuals. Physiological Reports, 11(1), e15563. https://doi.org/10.14814/phy2.15563