561
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Lesion symptom mapping of manipulable object naming in nonfluent aphasia: Can a brain be both embodied and disembodied?

, , , , &
Pages 287-312 | Received 15 Mar 2013, Accepted 07 Apr 2014, Published online: 20 May 2014

REFERENCES

  • Andersson, J., Jenkinson, M., & Smith, S. (2010). Non-linear registration, aka spatial normalisation (FMRIB Technical Report TR07JA2).
  • Arévalo, A., Perani, D., Cappa, S. F., Butler, A., Bates, E., & Dronkers, N. (2007). Action and object processing in aphasia: From nouns and verbs to the effect of manipulability. Brain and Language, 100(1), 79–94.
  • Baldo, J. V., Wilkins, D. P., Ogar, J., Willock, S., & Dronkers, N. F. (2011). Role of the precentral gyrus of the insula in complex articulation. Cortex, 47(7), 800–807.
  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22(4), 577–660.
  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645.
  • Barsalou, L. W., Simmons, W. K., Barbey, A. K., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 84–91.
  • Bates, E., Wilson, S. M., Saygin, A. P., Dick, F., Sereno, M. I., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448–450.
  • Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2002). Parallel visual motion processing streams for manipulable objects and human movements. Neuron, 34(1), 149–159.
  • Binder, J. R., & Desai, R. H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15(11), 527–536.
  • Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where Is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–2796.
  • Binney, R. J., Embleton, K. V., Jefferies, E., Parker, G. J. M., & Lambon Ralph, M. A. (2010). The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: Evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and Semantic Dementia. Cerebral Cortex, 20(11), 2728–2738. doi:10.1093/cercor/bhq019
  • Bonner, M. F., Peelle, J. E., Cook, P. A., & Grossman, M. (2013). Heteromodal conceptual processing in the angular gyrus. Neuroimage, 71, 175–186.doi:10.1016/j.neuroimage.2013.01.006
  • Bonner, M. F., Vesely, L., Price, C., Anderson, C., Richmond, L., Farag, C., … Grossman, M. (2009). Reversal of the concreteness effect in semantic dementia. Cognitive Neuropsychology, 26(6), 568–579. doi:919094196 [pii]10.1080/02643290903512305 [doi]
  • Bosco, G., Carrozzo, M., & Lacquaniti, F. (2008). Contributions of the human temporoparietal junction and MT/V5+ to the timing of interception revealed by transcranial magnetic stimulation. Journal of Neuroscience, 28(46), 12071–12084. doi:10.1523/jneurosci.2869-08.2008
  • Boulenger, V., Mechtouff, L., Thobois, S., Broussolle, E., Jeannerod, M., & Nazir, T. A. (2008). Word processing in Parkinson's disease is impaired for action verbs but not for concrete nouns. Neuropsychologia, 46(2), 743–756. doi:S0028–3932(07)00357-0 [pii]10.1016/j.neuropsychologia.2007.10.007 [doi]
  • Boulenger, V., Roy, A. C., Paulignan, Y., Deprez, V., Jeannerod, M., & Nazir, T. A. (2006). Cross-talk between language processes and overt motor behavior in the first 200 msec of processing. Journal of Cognitive Neuroscience, 18(10), 1607–1615. doi:10.1162/jocn.2006.18.10.1607 [doi]
  • Breedin, S. D., Saffran, E. M., & Coslett, H. B. (1994). Reversal of the concreteness effect in a patient with semantic dementia. Cognitive Neuropsychology, 11(6), 617–660.
  • Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon's Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1), 3–5. doi:10.1177/1745691610393980
  • Buxbaum, L. J., Kyle, K., Grossman, M., & Coslett, H. B. (2007). Left inferior parietal representations for skilled hand-object interactions: Evidence from stroke and corticobasal degeneration. Cortex, 43(3), 411–423.
  • Buxbaum, L. J., Schwartz, M. F., & Carew, T. G. (1997). The role of semantic memory in object use. Cognitive Neuropsychology, 14(2), 219–254.
  • Capitani, E., Laiacona, M., Mahon, B. Z., & Caramazza, A. (2003). What are the facts of semantic category-specific deficits?. A critical review of the clinical evidence. Cognitive Neuropsychology, 20(3–6), 213–261.
  • Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, 10(1), 1–34. doi:10.1162/089892998563752
  • Chao, L. L., & Martin, A. (1999). Cortical regions associated with perceiving, naming, and knowing about colors. Journal of Cognitive Neuroscience, 11(1), 25–35.
  • Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. Neuroimage, 12(4), 478–484.
  • Chatterjee, A. (2010). Disembodying cognition. Language and Cognition, 2(1), 79–116.
  • Chouinard, P. A., & Goodale, M. A. (2010). Category-specific neural processing for naming pictures of animals and naming pictures of tools: An ALE meta-analysis. Neuropsychologia, 48(2), 409–418.
  • Coccia, M., Bartolini, M., Luzzi, S., Provinciali, L., & Lambon Ralph, M. A. (2004). Semantic memory is an amodal, dynamic system: Evidence from the interaction of naming and object use in semantic dementia. Cognitive Neuropsychology, 21(5), 513–527.
  • Crutch, S. J., & Warrington, E. K. (2003). The selective impairment of fruit and vegetable knowledge: A multiple processing channels account of fine-grain category specificity. Cognitive Neuropsychology, 20(3–6), 355–372.
  • Damasio, A. R. (1989). Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition. Cognition, 33(1–2), 25–62.
  • de Zubicaray, G., Arciuli, J., & McMahon, K. (2013). Putting an “end” to the motor cortex representations of action words. Journal of Cognitive Neuroscience, 25(11), 1957–1974. doi:10.1162/jocn_a_00437
  • Devlin, J. T., Russell, R. P., Davis, M. H., Price, C. J., Moss, H. E., Fadili, M. J., & Tyler, L. K. (2002). Is there an anatomical basis for category-specificity? Semantic memory studies in PET and fMRI. Neuropsychologia, 40(1), 54–75.
  • Dick, F., Saygin, A. P., Galati, G., Pitzalis, S., Bentrovato, S., D'Amico, S., … Pizzamiglio, L. (2007). What is involved and what is necessary for complex linguistic and nonlinguistic auditory processing: Evidence from functional magnetic resonance imaging and lesion data. Journal of Cognitive Neuroscience, 19(5), 799–816.
  • Ding, S. L., Van Hoesen, G. W., Cassell, M. D., & Poremba, A. (2009). Parcellation of human temporal polar cortex: A combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. Journal of Comparative Neurology, 514(6), 595–623. doi:10.1002/cne.22053 [doi]
  • Dove, G. (2009). Beyond perceptual symbols: A call for representational pluralism. Cognition, 110(3), 412–431. doi:10.1016/j.cognition.2008.11.016
  • Dronkers, N. F. (1996). A new brain region for coordinating speech articulation. Nature, 384(6605), 159–161. doi:10.1038/384159a0 [doi]
  • Dronkers, N. F., Wilkins, D., van Valin, R. D., Redfern, B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92, 145–177.
  • Druks, J., Masterson, J., Kopelman, M., Clare, L., Rose, A., & Rai, G. (2006). Is action naming better preserved (than object naming) in Alzheimer's disease and why should we ask?. Brain and Language, 98(3), 332–340.
  • Dumoulin, S. O., Bittar, R. G., Kabani, N. J., Baker, C. L. Jr., Le Goualher, G., Bruce Pike, G., & Evans, A. C. (2000). A new anatomical landmark for reliable identification of human area V5/MT: A quantitative analysis of sulcal patterning. Cerebral Cortex, 10(5), 454–463.
  • Dunn, L. M., & Dunn, L. M. (1997). Peabody picture vocabulary test (PPVT-III). Circle Pines, MN: American Guidance Service.
  • Fairhall, S. L., & Caramazza, A. (2013). Brain regions that represent amodal conceptual knowledge. Journal of Neuroscience, 33(25), 10552–10558. doi:10.1523/jneurosci.0051-13.2013
  • Farah, M. J., & Feinberg, T. E. (2000). Visual object agnosia. Farah, Martha J.
  • Farah, M. J., & McClelland, J. L. (1991). A computational model of semantic memory impairment: Modality specificity and emergent category specificity. Journal of Experimental Psychology: General, 120(4), 339–357.
  • Franklin, S., Howard, D., & Patterson, K. (1994). Abstract word meaning deafness. Cognitive Neuropsychology, 11(1), 1–34.
  • Freud, S. (1891). On Aphasia (E. Stengel, Trans.). New York: International University Press.
  • Gage, N., & Hickok, G. (2005). Multiregional cell assemblies, temporal binding and the representation of conceptual knowledge in cortex: A modern theory by a 'classical' neurologist, Carl Wernicke. Cortex, 41(6), 823–832.
  • Gallese, V., & Lakoff, G. (2005). The brain's concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3), 455–479.
  • Garcea, F. E., & Mahon, B. Z. (2012). What is in a tool concept? Dissociating manipulation knowledge from function knowledge. Memory and Cognition, 40, 1303–1313. doi:10.3758/s13421-012-0236-y
  • Gonzalez Rothi, L. J., Ochipa, C., & Heilman, K. M. (1997). A cognitive neuropsychological model of limb praxis and apraxia. In L. J. Gonzaelz Rothi & K. M. Heilman (Eds.), Apraxia: The neuropsychology of action (pp. 29–49). Hove England: Psychology Press/Erlbaum (UK) Taylor & Francis.
  • Goodglass, H., & Kaplan, E. (1983). The assessment of aphasia and related disorders (2nd ed.). Philadelphia: Lea & Febiger Philadelphia.
  • Grossman, M., Anderson, C., Khan, A., Avants, B., Elman, L., & McCluskey, L. (2008). Impaired action knowledge in amyotrophic lateral sclerosis. Neurology, 71(18), 1396–1401. doi:10.1212/01.wnl.0000319701.50168.8c
  • Hart, J. Jr., & Gordon, B. (1992). Neural subsystems for object knowledge. Nature, 359(6390), 60–64. doi:10.1038/359060a0
  • Hauk, O., Johnsrude, I., & Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron, 41, 301–207.
  • Hauk, O., & Pulvermüller, F. (2004). Neurophysiological distinction of action words in the Fronto-Central cortex. Human Brain Mapping, 21(3), 191–201.
  • Hillis, A. E., & Caramazza, A. (1991). Category-specific naming and comprehension impairment: A double dissociation. Brain, 114(Pt 5), 2081–2094.
  • Hoenig, K., Sim, E. J., Bochev, V., Herrnberger, B., & Kiefer, M. (2008). Conceptual flexibility in the human brain: Dynamic recruitment of semantic maps from visual, motor, and motion-related areas. Journal of Cognitive Neuroscience, 20(10), 1799–1814.
  • Hoffman, P., Jones, R. W., & Ralph, M. A. (2012). The degraded concept representation system in semantic dementia: Damage to pan-modal hub, then visual spoke. Brain, 135(Pt 12), 3770–3780. doi:10.1093/brain/aws282
  • Hoffman, P., & Lambon Ralph, M. A. (2013). Shapes, scents and sounds: Quantifying the full multi-sensory basis of conceptual knowledge. Neuropsychologia, 51(1), 14–25. doi:10.1016/j.neuropsychologia.2012.11.009
  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160, 106–154.
  • Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London B Biological Sciences, 198(1130), 1–59.
  • Hubel, D. H., Wiesel, T. N., & Stryker, M. P. (1978). Anatomical demonstration of orientation columns in macaque monkey. Journal of Computational Neurology, 177(3), 361–380. doi:10.1002/cne.901770302
  • Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. Neuroimage, 62(2), 782–790. doi:10.1016/j.neuroimage.2011.09.015
  • Kable, J. W., & Chatterjee, A. (2006). Specificity of action representations in the lateral occipitotemporal cortex. Journal of Cognitive Neuroscience, 18(9), 1498–1517.
  • Kan, I. P., Kable, J. W., Van Scoyoc, A., Chatterjee, A., & Thompson-Schill, S. L. (2006). Fractionating the left frontal response to tools: Dissociable effects of motor experience and lexical competition. Journal of Cognitive Neuroscience, 18(2), 267–277.
  • Kandel, E. (2006). In search of memory. New York, New York: W.W. Norton and Company, Inc.
  • Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston naming test. Philadelphia: Lea and Febiger.
  • Kellenbach, M. L., Brett, M., & Patterson, K. (2001). Large, colorful, or noisy? Attribute- and modality-specific activations during retrieval of perceptual attribute knowledge. Cognitive, Affective, & Behavioral Neuroscience, 1(3), 207–221.
  • Kellenbach, M. L., Hovius, M., & Patterson, K. (2005). A pet study of visual and semantic knowledge about objects. Cortex, 41(2), 121–132.
  • Kemmerer, D., Rudrauf, D., Manzel, K., & Tranel, D. (2012). Behavioral patterns and lesion sites associated with impaired processing of lexical and conceptual knowledge of actions. Cortex, 48(7), 826–848.
  • Kertesz, A. (1982). The Western Aphasia battery revised (WAB-R). New York, NY: Pro-Ed.
  • Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48(7), 805–825. doi:10.1016/j.cortex.2011.04.006
  • Kolster, H., Peeters, R., & Orban, G. A. (2010). The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. Journal of Neuroscience, 30(29), 9801–9820. doi:10.1523/jneurosci.2069-10.2010
  • Lambon Ralph, M. A., Pobric, G., & Jefferies, E. (2008). Conceptual knowledge is underpinned by the temporal pole bilaterally: Convergent evidence from rTMS. Cerebral Cortex, 19(4), 832. doi:10.1093/cercor/bhn131
  • Lambon Ralph, M. A., Sage, K., Jones, R. W., & Mayberry, E. J. (2010). Coherent concepts are computed in the anterior temporal lobes. Proceedings of the National Academy of Sciences USA, 107(6), 2717–2722.
  • Libon, D. J., McMillan, C., Avants, B., Boller, A., Morgan, B., Burkholder, L., … Grossman, M. (2012). Deficits in concept formation in amyotrophic lateral sclerosis. Neuropsychology, 26(4), 422–429. doi:10.1037/a0028668
  • Mahon, B. Z., & Caramazza, A. (2003). Constraining questions about the organisation and representation of conceptual knowledge. Cognitive Neuropsychology, 20(3–6), 433–450.
  • Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology: Paris, 102(1–3), 59–70. doi:S0928-4257(08)00019-3 [pii]10.1016/j.jphysparis.2008.03.004 [doi]
  • Mahon, B. Z., & Caramazza, A. (2009). Concepts and categories: A cognitive neuropsychological perspective. Annual Review of Psychology, 60, 27–51.
  • Mahon, B. Z., & Caramazza, A. (2011). What drives the organization of object knowledge in the brain? Trends in Cognitive Sciences, 15(3), 97–103.
  • Malikovic, A., Amunts, K., Schleicher, A., Mohlberg, H., Eickhoff, S. B., Wilms, M., … Zilles, K. (2007). Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area hOc5. Cereb Cortex, 17(3), 562–574. doi:10.1093/cercor/bhj181
  • Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 25–45.
  • Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., & Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science, 270(5233), 102–105.
  • Martin, A., Ungerleider, L. G., & Haxby, J. V. (2000). Category specificity and the brain: The sensory/motor model of semantic representations of objects. In M. S. Gazanniga (Ed.), The new cognitive neurosciences (2 ed., pp. 1023–1036). Cambridge, MA: MIT Press.
  • Martin, A., Wiggs, C. L., Ungerleider, L. G., & Haxby, J. V. (1996). Neural correlates of category-specific knowledge. Nature, 379(6566), 649–652. doi:10.1038/379649a0 [doi]
  • Mason, W., & Suri, S. (2012). Conducting behavioral research on Amazon's mechanical Turk. Behavior Research Methods, 44(1), 1–23. doi:10.3758/s13428-011-0124-6
  • McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419–457.
  • McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37(4), 547–559.
  • Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A review of embodiment and the neuroscience of semantics. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 48(7), 788–804. doi:10.1016/j.cortex.2010.11.002
  • Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: A review of findings on social and emotional processing. Brain: A Journal of Neurology, 130(7), 1718–1731.
  • Orban, G. A., Fize, D., Peuskens, H., Denys, K., Nelissen, K., Sunaert, S., … Vanduffel, W. (2003). Similarities and differences in motion processing between the human and macaque brain: Evidence from fMRI. Neuropsychologia, 41(13), 1757–1768.
  • Papeo, L., Lingnau, A., Agosta, S., Pascual-Leone, A., Battelli, L., & Caramazza, A. (2014). The origin of word-related motor activity. Cerebral Cortex. Advance online publication. doi:10.1093/cercor/bht423
  • Park, H., Rogalski, Y., Rodriguez, A. D., Zlatar, Z., Benjamin, M., Harnish, S., … Reilly, J. (2011). Perceptual cues used by listeners to discriminate fluent from nonfluent narrative discourse. Aphasiology, 25(9), 998–1015. doi:10.1080/02687038.2011.570770
  • Patterson, K. (2007). The reign of typicality in semantic memory. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362(1481), 813–821. doi:1MW426N6VV32M223 [pii] 10.1098/rstb.2007.2090 [doi]
  • Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976–987.
  • Pazzaglia, M., Pizzamiglio, L., Pes, E., & Aglioti, S. M. (2008). The sound of actions in apraxia. Current Biology, 18(22), 1766–1772.
  • Pelphrey, K. A., Morris, J. P., Michelich, C. R., Allison, T., & McCarthy, G. (2005). Functional anatomy of biological motion perception in posterior temporal cortex: An fMRI study of eye, mouth and hand movements. Cerebral Cortex, 15(12), 1866–1876.
  • Pobric, G., Jefferies, E., & Lambon Ralph, M. A. (2007). Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants. Proceedings of the National Academy of Sciences, USA, 104(50), 20137–20141. doi:0707383104 [pii]10.1073/pnas.0707383104 [doi]
  • Postle, N., Ashton, R., McFarland, K., & de Zubicaray, G. I. (2013). No specific role for the manual motor system in processing the meanings of words related to the hand. Frontiers in Human Neuroscience, 7, 11. doi:10.3389/fnhum.2013.00011
  • Postle, N., McMahon, K. L., Ashton, R., Meredith, M., & de Zubicaray, G. I. (2008). Action word meaning representations in cytoarchitectonically defined primary and premotor cortices. Neuroimage, 43(3), 634–644. doi:10.1016/j.neuroimage.2008.08.006 [doi]
  • Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience, 6(7), 576–582. doi:nrn1706 [pii]10.1038/nrn1706 [doi]
  • Pulvermüller, F. (2013). Semantic embodiment, disembodiment or misembodiment? In search of meaning in modules and neuron circuits. Brain and Language, 127(1), 86–103. doi:10.1016/j.bandl.2013.05.015
  • Pulvermüller, F., Härle, M., & Hummel, F. (2001). Walking or talking?: Behavioral and neurophysiological correlates of action verb processing. Brain and Language, 78(2), 143–168.
  • Pulvermüller, F., Moseley, R. L., Egorova, N., Shebani, Z., & Boulenger, V. (2014). Motor cognition-motor semantics: Action perception theory of cognition and communication. Neuropsychologia, 55, 71–84. doi:10.1016/j.neuropsychologia.2013.12.002
  • Reilly, J., Cross, K., Troiani, V., & Grossman, M. (2007). Single word semantic judgments in Semantic Dementia: Do phonology and grammatical class count? Aphasiology, 21(6/7/8), 558–569.
  • Reilly, J., & Martin, N. (in press). Transcortical sensory aphasia and semantic processing. In L. Gonzalez Rothi & A. M. Raymer (Eds.), The Oxford handbook of aphasia and language disorders. Oxford, UK: Oxford University Press.
  • Reilly, J., & Peelle, J. E. (2008). Effects of semantic impairment on language processing in semantic dementia. Seminars in Speech and Language, 29, 32–43.
  • Reilly, J., Peelle, J. E., Antonucci, S. M., & Grossman, M. (2011). Anomia as a marker of distinct semantic memory impairments in Alzheimer's disease and semantic dementia. Neuropsychology, 25(4), 413–426.
  • Reilly, J., Rodriguez, A., Peelle, J. E., & Grossman, M. (2011). Frontal lobe damage impairs process and content in semantic memory: Evidence from category specific effects in progressive nonfluent aphasia. Cortex, 47, 645–658.
  • Riva, D., Nichelli, F., & Devoti, M. (2000). Developmental aspects of verbal fluency and confrontation naming in children. Brain and Language, 71(2), 267–284. doi:10.1006/brln.1999.2166
  • Rogers, T. T., Hocking, J., Noppeney, U., Mechelli, A., Gorno-Tempini, M. L., Patterson, K., & Price, C. J. (2006). Anterior temporal cortex and semantic memory: Reconciling findings from neuropsychology and functional imaging. Cognitive, Affective & Behavioral Neuroscience, 6(3), 201–213.
  • Rogers, T. T., Hodges, J. R., Lambon Ralph, M. A., & Patterson, K. (2003). Object recognition under semantic impairment: The effects of conceptual regularities on perceptual decisions. Language and Cognitive Processes, 18(5–6), 625–662.
  • Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland, J. L., Hodges, J. R., & Patterson, K. (2004). Structure and deterioration of semantic memory: A neuropsychological and computational investigation. Psychological Review, 111(1), 205–235.
  • Rogers, T. T., & McClelland, J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.
  • Rorden, C. (2007). MRIcron (Version Beta 7). Retrieved from http://www.cabiatl.com/mricro/mricron/index.html
  • Rorden, C., Fridriksson, J., & Karnath, H. O. (2009). An evaluation of traditional and novel tools for lesion behavior mapping. Neuroimage, 44(4), 1355–1362. doi:10.1016/j.neuroimage.2008.09.031
  • Rosch, E. H. (1973). Natural categories. Cogn Psychol, 4(3), 328–350. doi:10.1016/0010-0285(73)90017-0
  • Rosci, C., Chiesa, V., Laiacona, M., & Capitani, E. (2003). Apraxia is not associated to a disproportionate naming impairment for manipulable objects. Brain and Cognition, 53(2), 412–415. doi:10.1016/s0278-2626(03)00156-8
  • Sabsevitz, D. S., Medler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the semantic system by word imageability. Neuroimage, 27(1), 188–200.
  • Sacchett, C., & Humphreys, G. W. (1992). Calling a squirrel a squirrel but a canoe a wigwam: A category-specific deficit for artefactual objects and body parts. Cognitive Neuropsychology, 9(1), 73–86.
  • Salmon, J. P., McMullen, P. A., & Filliter, J. H. (2010). Norms for two types of manipulability (graspability and functional usage), familiarity, and age of acquisition for 320 photographs of objects. Behavior Research Methods, 42(1), 82–95. doi:10.3758/brm.42.1.82
  • Samson, D., & Pillon, A. (2003). A case of impaired knowledge for fruit and vegetables. Cognitive Neuropsychology, 20(3–6), 373–400.
  • Samson, D., Pillon, A., & De Wilde, V. (1998). Impaired knowledge of visual and non-visual attributes in a patient with a semantic impairment for living entities: A case of a true category-specific deficit. Neurocase, 4(4–5), 273–290.
  • Sartori, G., Gnoato, F., Mariani, I., Prioni, S., & Lombardi, L. (2007). Semantic relevance, domain specificity and the sensory/functional theory of category-specificity. Neuropsychologia, 45(5), 966–976. doi:10.1016/j.neuropsychologia.2006.08.028
  • Sartori, G., & Lombardi, L. (2004). Semantic relevance and semantic disorders. Journal of Cognitive Neuroscience, 16(3), 439–452. doi:10.1162/089892904322926773
  • Saygin, A. P., Dick, F., Wilson, S. M., Dronkers, N. F., & Bates, E. (2003). Neural resources for processing language and environmental sounds: Evidence from aphasia. Brain, 126(Pt 4), 928–945.
  • Simmons, W. K., Reddish, M., Bellgowan, P. S., & Martin, A. (2010). The selectivity and functional connectivity of the anterior temporal lobes. Cerebral Cortex, 20(4), 813–825. doi:10.1093/cercor/bhp149 [doi]
  • Sporns, O., Honey, C. J., & Kotter, R. (2007). Identification and classification of hubs in brain networks. PLoS One, 2(10), e1049. doi:10.1371/journal.pone.0001049
  • Turken, A. U., & Dronkers, N. F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5, 1.
  • Visser, M., Jefferies, E., Embleton, K. V., & Lambon Ralph, M. A. (2012). Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: Distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. Journal of Cognitive Neuroscience, 24(8), 1766–1778. doi:10.1162/jocn_a_00244
  • Visser, M., & Lambon Ralph, M. A. (2011). Differential contributions of bilateral ventral anterior temporal lobe and left anterior superior temporal gyrus to semantic processes. Journal of Cognitive Neuroscience, 23(10), 3121–3131. doi:10.1162/jocn_a_00007
  • Waller, A. (1850). Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philosophical Transactions of the Royal Society of London, 140, 423–429.
  • Warrington, E. K. (1975). The selective impairment of semantic memory. Quarterly Journal of Experimental Psychology, 27(4), 635–657.
  • Warrington, E. K., & McCarthy, R. (1983). Category specific access dysphasia. Brain, 106(Pt 4), 859–878.
  • Warrington, E. K., & McCarthy, R. A. (1987). Categories of knowledge. Further fractionations and an attempted integration. Brain, 110, 1273–1296.
  • Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107(3), 829–854.
  • Wellcome Trust Centre for Neuroimaging. (2009, April). Statistical Parametric Mapping (SPM8). Retrieved from http://www.fil.ion.ucl.ac.uk/spm/software/
  • Wernicke, C. (1874). Der aphasische symptomemkomplex: Eine psychologische Studie auf anatomischer basis. Breslau: Cohn und Weigert.
  • Willems, R. M., & Casasanto, D. (2011). Flexibility in embodied language understanding. Frontiers in Psychology, 2, 116.
  • Wilms, M., Eickhoff, S. B., Specht, K., Amunts, K., Shah, N. J., Malikovic, A., & Fink, G. R. (2005). Human V5/MT+: Comparison of functional and cytoarchitectonic data. Anatomy and Embryology (Berl), 210(5–6), 485–495. doi:10.1007/s00429-005-0064-y
  • Wu, D. H., Morganti, A., & Chatterjee, A. (2008). Neural substrates of processing path and manner information of a moving event. Neuropsychologia, 46(2), 704–713.
  • Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31(3), 1116–1128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.