562
Views
10
CrossRef citations to date
0
Altmetric
Articles

Visual and visuomotor processing of hands and tools as a case study of cross talk between the dorsal and ventral streams

ORCID Icon, ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 288-303 | Received 18 Oct 2017, Accepted 08 Apr 2018, Published online: 24 May 2018

References

  • Almeida, J., Fintzi, A. R., & Mahon, B. Z. (2013). Tool manipulation knowledge is retrieved by way of the ventral visual object processing pathway. Cortex, 49(9), 2334–2344. doi: 10.1016/j.cortex.2013.05.004
  • Almeida, J., Mahon, B. Z., & Caramazza, A. (2010). The role of the dorsal visual processing stream in tool identification. Psychological Science, 21(6), 772–778. doi: 10.1177/0956797610371343
  • Almeida, J., Mahon, B. Z., Nakayama, K., & Caramazza, A. (2008). Unconscious processing dissociates along categorical lines. Proceedings of the National Academy of Sciences, 105(39), 15214–15218. doi: 10.1073/pnas.0805867105
  • Almeida, J., Mahon, B. Z., Zapater-Raberov, V., Dziuba, A., Cabaço, T., Marques, J. F., & Caramazza, A. (2014). Grasping with the eyes: The role of elongation in visual recognition of manipulable objects. Cognitive, Affective, & Behavioral Neuroscience, 14(1), 319–335. doi: 10.3758/s13415-013-0208-0
  • Almeida, J., Martins, A. R., Bergstrom, F., Amaral, L., Freixo, A., Ganho-Ávila, A., … Ruttorf, M. (2017). Polarity-specific transcranial direct current stimulation effects on object-selective neural responses in the inferior parietal lobe. Cortex, 94, 176–181. doi: 10.1016/j.cortex.2017.07.001
  • Arbib, M. A. (2008). From grasp to language: Embodied concepts and the challenge of abstraction. Journal of Physiology-Paris, 102(1), 4–20. doi: 10.1016/j.jphysparis.2008.03.001
  • Borghi, A. M., Bonfiglioli, C., Lugli, L., Ricciardelli, P., Rubichi, S., & Nicoletti, R. (2007). Are visual stimuli sufficient to evoke motor information?: Studies with hand primes. Neuroscience Letters, 411(1), 17–21. doi: 10.1016/j.neulet.2006.10.003
  • Bracci, S., Cavina-Pratesi, C., Connolly, J. D., & Ietswaart, M. (2016). Representational content of occipitotemporal and parietal tool areas. Neuropsychologia, 84, 81–88. doi: 10.1016/j.neuropsychologia.2015.09.001
  • Bracci, S., Cavina-Pratesi, C., Ietswaart, M., Caramazza, A., & Peelen, M. V. (2012). Closely overlapping responses to tools and hands in left lateral occipitotemporal cortex. Journal of Neurophysiology, 107(5), 1443–1456. doi: 10.1152/jn.00619.2011
  • Bracci, S., Ietswaart, M., Peelen, M. V., & Cavina-Pratesi, C. (2010). Dissociable neural responses to hands and non-hand body parts in human left extrastriate visual cortex. Journal of Neurophysiology, 103(6), 3389–3397. doi: 10.1152/jn.00215.2010
  • Bracci, S., & Peelen, M. V. (2013). Body and object effectors: The organization of object representations in high-level visual cortex reflects body–object interactions. The Journal of Neuroscience, 33(46), 18247–18258. doi: 10.1523/JNEUROSCI.1322-13.2013
  • Brandi, M.-L., Wohlschläger, A., Sorg, C., & Hermsdörfer, J. (2014). The neural correlates of planning and executing actual tool use. The Journal of Neuroscience, 34(39), 13183–13194. doi: 10.1523/JNEUROSCI.0597-14.2014
  • Breitmeyer, B. G., & Ogmen, H. (2000). Recent models and findings in visual backward masking: A comparison, review, and update. Perception & Psychophysics, 62(8), 1572–1595. doi: 10.3758/BF03212157
  • Bub, D. N., & Masson, M. E. (2010). Grasping beer mugs: On the dynamics of alignment effects induced by handled objects. Journal of Experimental Psychology: Human Perception and Performance, 36(2), 341–358. doi: 10.1037/a0017606
  • Bub, D. N., Masson, M. E., & Lin, T. (2013). Features of planned hand actions influence identification of graspable objects. Psychological Science, 24(7), 1269–1276. doi: 10.1177/0956797612472909
  • Buxbaum, L. J., Kyle, K., Grossman, M., & Coslett, B. (2007). Left inferior parietal representations for skilled hand-object interactions: Evidence from stroke and corticobasal degeneration. Cortex, 43(3), 411–423. doi: 10.1016/S0010-9452(08)70466-0
  • Buxbaum, L. J., & Saffran, E. M. (2002). Knowledge of object manipulation and object function: Dissociations in apraxic and nonapraxic subjects. Brain and Language, 82(2), 179–199. doi: 10.1016/S0093-934X(02)00014-7
  • Cant, J. S., & Goodale, M. A. (2007). Attention to form or surface properties modulates different regions of human occipitotemporal cortex. Cerebral Cortex, 17(3), 713–731. doi: 10.1093/cercor/bhk022
  • Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, 10, 1–34. doi: 10.1162/089892998563752
  • Carey, D., Harvey, M., & Milner, A. (1996). Visuomotor sensitivity for shape and orientation in a patient with visual form agnosia. Neuropsychologia, 34(5), 329–337. doi: 10.1016/0028-3932(95)00169-7
  • Chan, A. W., Kravitz, D. J., Truong, S., Arizpe, J., & Baker, C. I. (2010). Cortical representations of bodies and faces are strongest in commonly experienced configurations. Nature Neuroscience, 13(4), 417–418. doi: 10.1038/nn.2502
  • Chao, L. L., Haxby, J. V., & Martin, A. (1999). Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2(10), 913–919. doi: 10.1038/13217
  • Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. Neuroimage, 12(4), 478–484. doi: 10.1006/nimg.2000.0635
  • Chen, Q., Garcea, F. E., Almeida, J., & Mahon, B. Z. (2016). Connectivity-based constraints on category-specificity in the ventral object processing pathway. Neuropsychologia, doi: 10.1016/j.neuropsychologia.2016.11.014
  • Craighero, L., Fadiga, L., Umilta, C. A., & Rizzolatti, G. (1996). Evidence for visuomotor priming effect. Neuro Report, 8(1), 347–349. http://dx.doi.org/10.1097/00001756-199612200-00068
  • Crawford, J. R., & Garthwaite, P. H. (2005). Testing for suspected impairments and dissociations in single-case studies in neuropsychology: Evaluation of alternatives using Monte Carlo simulations and revised tests for dissociations. Neuropsychology, 19, 318–331. doi: 10.1037/0894-4105.19.3.318
  • Crawford, J. R., Garthwaite, P. H., & Porter, S. (2010). Point and interval estimates of effect sizes for the case-controls design in neuropsychology: Rationale, methods, implementations, and proposed reporting standard. Cognitive Neuropsychology, 27, 245–260. doi: 10.1080/02643294.2010.513967
  • Crawford, J. R., Howell, D. C., & Garthwaite, P. H. (1998). Payne and Jones revisited: Estimating the abnormality of test score differences using a modified paired samples t-test. Journal of Clinical and Experimental Neuropsychology, 20, 898–905. doi: 10.1076/jcen.20.6.898.1112
  • Culham, J. C., Danckert, S. L., De Souza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153(2), 180–189. doi: 10.1007/s00221-003-1591-5
  • de Beeck, H. P. O., Brants, M., Baeck, A., & Wagemans, J. (2010). Distributed subordinate specificity for bodies, faces, and buildings in human ventral visual cortex. Neuroimage, 49(4), 3414–3425. doi: 10.1016/j.neuroimage.2009.11.022
  • Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. The Journal of Neuroscience, 4(8), 2051–2062. doi: 10.1523/JNEUROSCI.04-08-02051.1984
  • Druks, J., & Masterson, J. (2000). An object and action naming battery. Hove: Psychology Press.
  • Ellis, R., & Tucker, M. (2000). Micro-affordance: The potentiation of components of action by seen objects. British Journal of Psychology, 91(4), 451–471. doi: 10.1348/000712600161934
  • Fabbri, S., Stubbs, K. M., Cusack, R., & Culham, J. C. (2016). Disentangling representations of object and grasp properties in the human brain. Journal of Neuroscience, 36(29), 7648–7662. doi: 10.1523/JNEUROSCI.0313-16.2016
  • Freud, E., Culham, J. C., Plaut, D. C., & Behrmann, M. (2017). The large-scale organization of shape processing in the ventral and dorsal pathways. Elife, 6. https://doi.org/10.7554/eLife.27576.001
  • Freud, E., Ganel, T., Shelef, I., Hammer, M. D., Avidan, G., & Behrmann, M. (2017). Three-dimensional representations of objects in dorsal cortex are dissociable from those in ventral cortex. Cerebral Cortex, 27(1), 422–434. doi: 10.1093/cercor/bhv229
  • Freud, E., Plaut, D. C., & Behrmann, M. (2016). “What” is happening in the dorsal visual pathway. Trends Cognitive Science, 20(10), 773–784. doi: 10.1016/j.tics.2016.08.003
  • Garcea, F. E., Dombovy, M., & Mahon, B. Z. (2013). Preserved tool knowledge in the context of impaired action knowledge: Implications for models of semantic memory. Frontiers in Human Neuroscience, 7, 120. doi: 10.3389/fnhum.2013.00120
  • Garcea, F. E., Kristensen, S., Almeida, J., & Mahon, B. Z. (2016). Resilience to the contralateral visual field bias as a window into object representations. Cortex, 81, 14–23. doi: 10.1016/j.cortex.2016.04.006
  • Gibson, J. (1979). The ecological approach to visual perception. Boston, MA: Hough ton Mifflin.
  • Goldenberg, G. (2009). Apraxia and the parietal lobes. Neuropsychologia, 47(6), 1449–1459. doi: 10.1016/j.neuropsychologia.2008.07.014
  • Goldenberg, G., & Spatt, J. (2009). The neural basis of tool use. Brain, 132(6), 1645–1655. doi: 10.1093/brain/awp080
  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25. doi: 10.1016/0166-2236(92)90344-8
  • Grèzes, J., Armony, J. L., Rowe, J., & Passingham, R. E. (2003). Activations related to “mirror” and “canonical” neurones in the human brain: An fMRI study. Neuroimage, 18(4), 928–937. doi: 10.1016/S1053-8119(03)00042-9
  • Grèzes, J., & Decety, J. (2002). Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia, 40(2), 212–222. doi: 10.1016/S0028-3932(01)00089-6
  • Grèzes, J., Tucker, M., Armony, J., Ellis, R., & Passingham, R. E. (2003). Objects automatically potentiate action: An fMRI study of implicit processing. European Journal of Neuroscience, 17(12), 2735–2740. doi: 10.1046/j.1460-9568.2003.02695.x
  • Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Research, 41(10), 1409–1422. doi: 10.1016/S0042-6989(01)00073-6
  • Grosbras, M.-H., & Paus, T. (2006). Brain networks involved in viewing angry hands or faces. Cerebral Cortex, 16(8), 1087–1096. doi: 10.1093/cercor/bhj050
  • Haaland, K. Y., Harrington, D. L., & Knight, R. T. (2000). Neural representations of skilled movement. Brain, 123(11), 2306–2313. doi: 10.1093/brain/123.11.2306
  • Ishibashi, R., Pobric, G., Saito, S., & Lambon Ralph, M. A. (2016). The neural network for tool-related cognition: An activation likelihood estimation meta-analysis of 70 neuroimaging contrasts. Cognitive Neuropsychology, 33(3–4), 241–256. doi: 10.1080/02643294.2016.1188798
  • Jeannerod, M., Decety, J., & Michel, F. (1994). Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia, 32(4), 369–380. doi: 10.1016/0028-3932(94)90084-1
  • Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8(2), 71–78. doi: 10.1016/j.tics.2003.12.002
  • Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15(6), 681–695. doi: 10.1093/cercor/bhh169
  • Kiani, R., Esteky, H., Mirpour, K., & Tanaka, K. (2007). Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. Journal of Neurophysiology, 97(6), 4296–4309. doi: 10.1152/jn.00024.2007
  • Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in psychtoolbox-3. Perception, 36(14), 1. doi: 10.1068/v070821
  • Kristensen, S., Garcea, F. E., Mahon, B. Z., & Almeida, J. (2016). Temporal frequency tuning reveals interactions between the dorsal and ventral visual streams. Journal of Cognitive Neuroscience, 28(9), 1295–1302. doi: 10.1162/jocn_a_00969
  • Lewis, J. W. (2006). Cortical networks related to human use of tools. The Neuroscientist, 12(3), 211–231. doi: 10.1177/1073858406288327
  • Lyon, D. C., Nassi, J. J., & Callaway, E. M. (2010). A disynaptic relay from superior colliculus to dorsal stream visual cortex in macaque monkey. Neuron, 65(2), 270–279. doi: 10.1016/j.neuron.2010.01.003
  • Mahon, B. Z., & Caramazza, A. (2009). Concepts and categories: A cognitive neuropsychological perspective. Annual Review of Psychology, 60, 27–51. doi: 10.1146/annurev.psych.60.110707.163532
  • Mahon, B. Z., Kumar, N., & Almeida, J. (2013). Spatial frequency tuning reveals interactions between the dorsal and ventral visual systems. Journal of Cognitive Neuroscience, 25(6), 862–871. doi: 10.1162/jocn_a_00370
  • Mahon, B. Z., Milleville, S. C., Negri, G. A., Rumiati, R. I., Caramazza, A., & Martin, A. (2007). Action-related properties shape object representations in the ventral stream. Neuron, 55(3), 507–520. doi: 10.1016/j.neuron.2007.07.011
  • Makris, S., Hadar, A. A., & Yarrow, K. (2011). Viewing objects and planning actions: On the potentiation of grasping behaviours by visual objects. Brain and Cognition, 77(2), 257–264. doi: 10.1016/j.bandc.2011.08.002
  • Marques, J. F., Raposo, A., & Almeida, J. (2013). Structural processing and category-specific deficits. Cortex, 49, 266–275. doi: 10.1016/j.cortex.2011.10.006
  • Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 25–45. doi: 10.1146/annurev.psych.57.102904.190143
  • McCarthy, G., Puce, A., Belger, A., & Allison, T. (1999). Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex. Cerebral Cortex, 9(5), 431–444. doi: 10.1093/cercor/9.5.431
  • Meier, J. D., Aflalo, T. N., Kastner, S., & Graziano, M. S. (2008). Complex organization of human primary motor cortex: A high-resolution fMRI study. Journal of Neurophysiology, 100(4), 1800–1812. doi: 10.1152/jn.90531.2008
  • Miceli, G., Fouch, E., Capasso, R., Shelton, J. R., Tomaiuolo, F., & Caramazza, A. (2001). The dissociation of color from form and function knowledge. Nature Neuroscience, 4(6), 662–667. doi: 10.1038/88497
  • Mruczek, R. E., von Loga, I. S., & Kastner, S. (2013). The representation of tool and non-tool object information in the human intraparietal sulcus. Journal of Neurophysiology, 109(12), 2883–2896. doi: 10.1152/jn.00658.2012
  • Negri, G. A., Rumiati, R. I., Zadini, A., Ukmar, M., Mahon, B. Z., & Caramazza, A. (2007). What is the role of motor simulation in action and object recognition? Evidence from apraxia. Cognitive Neuropsychology, 24(8), 795–816. doi: 10.1080/02643290701707412
  • Noppeney, U., Price, C. J., Penny, W. D., & Friston, K. J. (2006). Two distinct neural mechanisms for category-selective responses. Cerebral Cortex, 16(3), 437–445. doi: 10.1093/cercor/bhi123
  • Oosterhof, N. N., Tipper, S. P., & Downing, P. E. (2012). Viewpoint (in)dependence of action representations: An mvpa study. Journal of Cognitive Neuroscience, 24(4), 975–989. doi: 10.1162/jocn_a_00195
  • Orban, G. A., & Caruana, F. (2014). The neural basis of human tool use. Frontiers in Psychology, 5, 310. https://doi.org/10.3389/fpsyg.2014.00310
  • Padberg, J., Franca, J. G., Cooke, D. F., Soares, J. G., Rosa, M. G., Fiorani, M., … Krubitzer, L. (2007). Parallel evolution of cortical areas involved in skilled hand use. The Journal of Neuroscience, 27(38), 10106–10115. doi: 10.1523/JNEUROSCI.2632-07.2007
  • Peeters, R. R., Rizzolatti, G., & Orban, G. A. (2013). Functional properties of the left parietal tool use region. Neuroimage, 78, 83–93. doi: 10.1016/j.neuroimage.2013.04.023
  • Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain: A Journal of Neurology, 60, 389–443. doi: 10.1093/brain/60.4.389
  • Perenin, M.-T., & Vighetto, A. (1988). Optic ataxia: A specific disruption in visuomotor mechanisms. Brain, 111(3), 643–674. doi: 10.1093/brain/111.3.643
  • Phillips, J. C., & Ward, R. (2002). SR correspondence effects of irrelevant visual affordance: Time course and specificity of response activation. Visual Cognition, 9(4–5), 540–558. doi: 10.1080/13506280143000575
  • Riddoch, M. J., Edwards, M. G., Humphreys, G. W., West, R., & Heafield, T. (1998). Visual affordances direct action: Neuropsychological evidence from manual interference. Cognitive Neuropsychology, 15(6–8), 645–683. doi: 10.1080/026432998381041
  • Riddoch, M. J., Humphreys, G. W., Edwards, S., Baker, T., & Willson, K. (2003). Seeing the action: Neuropsychological evidence for action-based effects on object selection. Nature Neuroscience, 6(1), 82–89. doi: 10.1038/nn984
  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. doi: 10.1146/annurev.neuro.27.070203.144230
  • Schmid, M. C., & Maier, A. (2015). To see or not to see--thalamo-cortical networks during blindsight and perceptual suppression. Progress in Neurobiology, 126, 36–48. doi: 10.1016/j.pneurobio.2015.01.001
  • Schmid, M. C., Mrowka, S. W., Turchi, J., Saunders, R. C., Wilke, M., Peters, A. J., … Leopold, D. A. (2010). Blindsight depends on the lateral geniculate nucleus. Nature, 466(7304), 373–377. doi: 10.1038/nature09179
  • Schmid, M. C., Panagiotaropoulos, T., Augath, M. A., Logothetis, N. K., & Smirnakis, S. M. (2009). Visually driven activation in macaque areas V2 and V3 without input from the primary visual cortex. PLoS One, 4(5), e5527. doi: 10.1371/journal.pone.0005527
  • Shmuelof, L., & Zohary, E. (2005). Dissociation between ventral and dorsal fMRI activation during object and action recognition. Neuron, 47(3), 457–470. doi: 10.1016/j.neuron.2005.06.034
  • Sincich, L. C., Park, K. F., Wohlgemuth, M. J., & Horton, J. C. (2004). Bypassing V1: A direct geniculate input to area MT. Nature Neuroscience, 7(10), 1123–1128. doi: 10.1038/nn1318
  • Sirigu, A., Grafman, J., Bressler, K., & Sunderland, T. (1991). Multiple representations contribute to body knowledge processing. Brain, 114(1), 629–642. doi: 10.1093/brain/114.1.629
  • Stasenko, A., Bonn, C., Teghipco, A., Garcea, F. E., Sweet, C., Dombovy, M., … Mahon, B. Z. (2015). A causal test of the motor theory of speech perception: A case of impaired speech production and spared speech perception. Cognitive Neuropsychology, 32, 38–57. doi: 10.1080/02643294.2015.1035702
  • Tipper, S. P., Paul, M. A., & Hayes, A. E. (2006). Vision-for-action: The effects of object property discrimination and action state on affordance compatibility effects. Psychonomic Bulletin & Review, 13(3), 493–498. doi: 10.3758/BF03193875
  • Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B., & Tootell, R. B. (2003). Faces and objects in macaque cerebral cortex. Nature Neuroscience, 6(9), 989–995. doi: 10.1038/nn1111
  • Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830–846. doi: 10.1037/0096-1523.24.3.830
  • Vainio, L., Symes, E., Ellis, R., Tucker, M., & Ottoboni, G. (2008). On the relations between action planning, object identification, and motor representations of observed actions and objects. Cognition, 108, 444–465. doi: 10.1016/j.cognition.2008.03.007
  • Vainio, L., Tucker, M., & Ellis, R. (2007). Precision and power grip priming by observed grasping. Brain and Cognition, 65(2), 195–207. doi: 10.1016/j.bandc.2007.07.004
  • Valyear, K. F., Culham, J. C., Sharif, N., Westwood, D., & Goodale, M. A. (2006). A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: A human fMRI study. Neuropsychologia, 44(2), 218–228. doi: 10.1016/j.neuropsychologia.2005.05.004
  • Vingerhoets, G., Vandamme, K., & Vercammen, A. (2009). Conceptual and physical object qualities contribute differently to motor affordances. Brain and Cognition, 69(3), 481–489. doi: 10.1016/j.bandc.2008.10.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.