923
Views
10
CrossRef citations to date
0
Altmetric
Articles

Developmental differences in temporal schema acquisition impact reasoning decisions

, , , &
Pages 25-45 | Received 13 May 2019, Accepted 06 Sep 2019, Published online: 10 Oct 2019

References

  • Achenbach, T. M. (1991). Manual for the child behavior checklist/4-18 and 1991 profile. Burlington, VT: Department of Psychiatry, University of Vermont.
  • Allen, T. A., Salz, D. M., McKenzie, S., & Fortin, N. J. (2016). Nonspatial sequence coding in CA1 neurons. The Journal of Neuroscience, 36(5), 1547–1563.
  • Badger, J. R., & Shapiro, L. R. (2012). Evidence of a transition from perceptual to category induction in 3- to 9-year-old children. Journal of Experimental Child Psychology, 113, 131–146.
  • Bahner, F., Demanuele, C., Schweiger, J., Gerchen, M. F., Zamoscik, V., Ueltzhoffer, K., … Meyer-Lindenberg, A. (2015). Hippocampal-dorsolateral prefrontal coupling as a species-conserved cognitive mechanism: A human translational imaging study. Neuropsychopharmacology, 40(7), 1674–1681.
  • Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in continuous narrative perception and memory. Neuron, 95(3), 709–721.e5.
  • Baldassano, C., Hasson, U., & Norman, K. A. (2018). Representation of real-world event schemas during narrative perception. The Journal of Neuroscience, 38(45), 9689–9699.
  • Baldwin, D. A., Baird, J. A., Saylor, M. M., & Clark, M. A. (2001). Infants parse dynamic action. Child Development, 72(3), 708–717.
  • Baraduc, P., Duhamel, J. R., & Wirth, S. (2019). Schema cells in the macaque hippocampus. Science, 363(6427), 635–639.
  • Barbas, H., & Blatt, G. J. (1995). Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus, 5(6), 511–533.
  • Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge, England: Cambridge University Press.
  • Batterink, L. J., Paller, K. A., & Reber, P. J. (2019). Understanding the neural bases of implicit and statistical learning. Topics in Cognitive Science, 11, 482–503.
  • Bauer, P. J. (1996). What do infants recall of their lives? Memory for specific events by one- to two-year-olds. American Psychologist, 51(1), 29–41.
  • Bauer, P. J. (2007). Remembering the times of our lives: Memory in infancy and beyond. Mahwah, NJ: Lawrence Erlbaum Associates.
  • Bauer, P. J., & Dow, G. A. (1994). Episodic memory in 16- and 20-month-old children: Specifics are generalized but not forgotten. Developmental Psychology, 30(3), 403–417.
  • Bauer, P. J., Dugan, J. A., Varga, N. L., & Riggins, T. (In press). Relations between neural structures and children’s self-derivation of new knowledge through memory integration. Developmental Cognitive Neuroscience.
  • Bauer, P. J., & Mandler, J. M. (1989). One thing follows another: Effects of temporal structure on 1- to 2-year-olds’ recall of events. Developmental Psychology, 25(2), 197–206.
  • Booth, A. E., & Waxman, S. (2002). Object names and object functions serve as cues to categories for infants. Developmental Psychology, 38(6), 948–957.
  • Brainerd, C. J., Holliday, R. E., & Reyna, V. F. (2004). Behavioral measurement of remembering phenomenologies: So simple a child can do it. Child Development, 75(2), 497–504.
  • Buckner, R. L. (2010). The role of the hippocampus in prediction and imagination. Annual Review of Psychology, 61, 27–48.
  • Cai, D. J., Aharoni, D., Shuman, T., Shobe, J., Biane, J., Song, W., … Silva, A. J. (2016). A shared neural ensemble links distinct contextual memories encoded close in time. Nature, 534(7605), 115–118.
  • Casey, B. J. (2015). Beyond simple models of self-control to circuit-based accounts of adolescent behavior. Annual Review of Psychology, 66, 295–319.
  • Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J., & Reinoso-Suarez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cerebral Cortex, 10(3), 220–242.
  • Cohen, N. J., & Eichenbaum, H. E. (1993). Memory, amnesia, and the hippocampal system. Cambridge, MA: The MIT Press.
  • Collin, S. H., Milivojevic, B., & Doeller, C. F. (2015). Memory hierarchies map onto the hippocampal long axis in humans. Nature Neuroscience, 18(11), 1562–1564.
  • Daugherty, A. M., Bender, A. R., Raz, N., & Ofen, N. (2016). Age differences in hippocampal subfield volumes from childhood to late adulthood. Hippocampus, 26(2), 220–228.
  • Decker, J. H., Otto, A. R., Daw, N. D., & Hartley, C. A. (2016). From creatures of habit to goal-directed learners: Tracking the developmental emergence of model-based reinforcement learning. Psychological Science, 27(6), 848–858.
  • DeMaster, D., Coughlin, C., & Ghetti, S. (2016). Retrieval flexibility and reinstatement in the developing hippocampus. Hippocampus, 26(4), 492–501.
  • DeMaster, D., Pathman, T., Lee, J. K., & Ghetti, S. (2014). Structural development of the hippocampus and episodic memory: Developmental differences along the anterior/posterior axis. Cerebral Cortex, 24(11), 3036–3045.
  • Derogatis, L. R. (1977). SCL-90-R: Administration, scoring and procedures: Manual 1. Baltimore, MD: Clinical Psychometric Research.
  • Destrebecqz, A., & Cleeremans, A. (2001). Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychonomic Bulletin & Review, 8(2), 343–350.
  • Doll, B. B., Duncan, K. D., Simon, D. A., Shohamy, D., & Daw, N. D. (2015). Model-based choices involve prospective neural activity. Nature Neuroscience, 18(5), 767–772.
  • Eichenbaum, H. (1997). Declarative memory: Insights from cognitive neurobiology. Annual Review of Psychology, 48(1), 547–572.
  • Ezzyat, Y., & Davachi, L. (2011). What constitutes an episode in episodic memory? Psychological Science, 22(2), 243–252.
  • Ezzyat, Y., & Davachi, L. (2014). Similarity breeds proximity: Pattern similarity within and across contexts is related to later mnemonic judgments of temporal proximity. Neuron, 81(5), 1179–1189.
  • Fandakova, Y., Bunge, S. A., Wendelken, C., Desautels, P., Hunter, L., Lee, J. K., & Ghetti, S. (2018). The importance of knowing when you don’t remember: Neural signaling of retrieval failure predicts memory improvement over time. Cerebral Cortex, 28(1), 90–102.
  • Farovik, A., Place, R. J., McKenzie, S., Porter, B., Munro, C. E., & Eichenbaum, H. (2015). Orbitofrontal cortex encodes memories within value-based schemas and represents contexts that guide memory retrieval. Journal of Neuroscience, 35(21), 8333–8344.
  • Farrar, M. J., & Goodman, G. S. (1992). Developmental changes in event memory. Child Development, 63(1), 173–187.
  • Fiser, J., & Aslin, R. N. (2002). Statistical learning of higher-order temporal structure from visual shape sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 458–467.
  • Fisher, A. V., Godwin, K. E., & Matlen, B. J. (2015). Development of inductive generalization with familiar categories. Psychonomic Bulletin & Review, 22(5), 1149–1173.
  • Fivush, F., & Slackman, E. (1986). The acquisition and development of scripts. In K. Nelson (Ed.), Event knowledge: Structure and function in development (pp. 71–96). Hillsdale, NJ: Erlbaum.
  • Fortin, N. J., Agster, K. L., & Eichenbaum, H. B. (2002). Critical role of the hippocampus in memory for sequences of events. Nature Neuroscience, 5(5), 458–462.
  • Garvert, M. M., Dolan, R. J., & Behrens, T. E. (2017). A map of abstract relational knowledge in the human hippocampal-entorhinal cortex. Elife, 6, 1–20.
  • Geng, F., Redcay, E., & Riggins, T. (2019). The influence of age and performance on hippocampal function and the encoding of contextual information in early childhood. Neuroimage, 195, 433–443.
  • Gershman, S. J., Monfils, M. H., Norman, K. A., & Niv, Y. (2017). The computational nature of memory modification. Elife, 6, 1–41.
  • Ghetti, S., & Bunge, S. A. (2012). Neural changes underlying the development of episodic memory during middle childhood. Developmental Cognitive Neuroscience, 2(4), 381–395.
  • Ghetti, S., DeMaster, D. M., Yonelinas, A. P., & Bunge, S. A. (2010). Developmental differences in medial temporal lobe function during memory encoding. Journal of Neuroscience, 30(28), 9548–9556.
  • Ghosh, V. E., & Gilboa, A. (2014). What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia, 53, 104–114.
  • Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., … Rapoport, J. L. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2, 861–863.
  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., … Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101(21), 8174–8179.
  • Gogtay, N., Nugent, T. F., Herman, D. H., Ordonez, A., Greenstein, D., Hayashi, K. M., … Thompson, P. M. (2006). Dynamic mapping of normal human hippocampal development. Hippocampus, 16(8), 664–672.
  • Gómez, R. L., Bootzin, R. R., & Nadel, L. (2006). Naps promote abstraction in language-learning infants. Psychological Science, 17(8), 670–674.
  • Gravina, M. T., & Sederberg, P. B. (2017). The neural architecture of prediction over a continuum of spatiotemporal scales. Current Opinion in Behavioral Sciences, 17, 194–202.
  • Hannula, D. E., & Ranganath, C. (2009). The eyes have it: Hippocampal activity predicts expression of memory in eye movements. Neuron, 63(5), 592–599.
  • Hindy, N. C., Ng, F. Y., & Turk-Browne, N. B. (2016). Linking pattern completion in the hippocampus to predictive coding in visual cortex. Nature Neuroscience, 19(5), 665–667.
  • Hsieh, L. T., Gruber, M. J., Jenkins, L. J., & Ranganath, C. (2014). Hippocampal activity patterns carry information about objects in temporal context. Neuron, 81(5), 1165–1178.
  • Hudson, J. A., Fivush, R., & Kuebli, J. (1992). Scripts and episodes: The development of event memory. Applied Cognitive Psychology, 6, 483–505.
  • Hunt, P. S., Burk, J. A., & Barnet, R. C. (2016). Adolescent transitions in reflexive and non-reflexive behavior: Review of fear conditioning and impulse control in rodent models. Neuroscience & Biobehavioral Reviews, 70, 33–45.
  • Jenkins, L. J., & Ranganath, C. (2010). Prefrontal and medial temporal lobe activity at encoding predicts temporal context memory. Journal of Neuroscience, 30(46), 15558–15565.
  • Karuza, E. A., Kahn, A. E., Thompson-Schill, S. L., & Bassett, D. S. (2017). Process reveals structure: How a network is traversed mediates expectations about its architecture. Scientific Reports, 7(1), 12733.
  • Keresztes, A., Bender, A. R., Bodammer, N. C., Lindenberger, U., Shing, Y. L., & Werkle-Bergner, M. (2017). Hippocampal maturity promotes memory distinctiveness in childhood and adolescence. Proceedings of the National Academy of Sciences, 114(34), 9212–9217.
  • Keresztes, A., Ngo, C. T., Lindenberger, U., Werkle-Bergner, M., & Newcombe, N. S. (2018). Hippocampal maturation drives memory from generalization to specificity. Trends in Cognitive Sciences, 22(8), 676–686.
  • Kim, G., Lewis-Peacock, J. A., Norman, K. A., & Turk-Browne, N. B. (2014). Pruning of memories by context-based prediction error. Proceedings of the National Academy of Sciences, 111(24), 8997–9002.
  • Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development (Vol. 1). Englewood Cliffs, NJ: Prentice-Hall.
  • Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis - connecting the branches of systems neuroscience. Frontiers in Neuroscience, 2, 4–5.
  • Kumaran, D., Summerfield, J. J., Hassabis, D., & Maguire, E. A. (2009). Tracking the emergence of conceptual knowledge during human decision making. Neuron, 63(6), 889–901.
  • Kwak, Y., Payne, J. W., Cohen, A. L., & Huettel, S. A. (2015). The rational adolescent: Strategic information processing during decision making revealed by eye tracking. Cognitive Development, 36, 20–30.
  • Lee, J. K., Wendelken, C., Bunge, S. A., & Ghetti, S. (2016). A time and place for everything: Developmental differences in the building blocks of episodic memory. Child Development, 87(1), 194–210.
  • Lewin, K. (1942). Field theory and learning. In H. B. Nelson (Ed.), The forty-first yearbook of the national society for the study of education: Part II, the psychology of learning (pp. 215–242). Chicago, IL: University of Chicago.
  • Lewis, P. A., & Durrant, S. J. (2011). Overlapping memory replay during sleep builds cognitive schemata. Trends in Cognitive Sciences, 15, 343–351.
  • Lewkowicz, D. J. (2004). Perception of serial order in infants. Developmental Science, 7(2), 175–184.
  • Lewkowicz, D. J. (2008). Perception of dynamic and static audiovisual sequences in 3- and 4-month-old infants. Child Development, 79(5), 1538–1554.
  • Lloyd, M. E., Doydum, A. O., & Newcombe, N. S. (2009). Memory binding in early childhood: Evidence for a retrieval deficit. Child Development, 80(5), 1321–1328.
  • Lukowski, A. F., Wiebe, S. A., & Bauer, P. J. (2009). Going beyond the specifics: Generalization of single actions, but not temporal order, at 9 months. Infant Behavior and Development, 32(3), 331–335.
  • Mack, M. L., Love, B. C., & Preston, A. R. (2016). Dynamic updating of hippocampal object representations reflects new conceptual knowledge. Proceedings of the National Academy of Sciences, 113(46), 13203–13208.
  • Mack, M. L., Love, B. C., & Preston, A. R. (2018). Building concepts one episode at a time: The hippocampus and concept formation. Neuroscience Letters, 680, 31–38.
  • Mack, M. L., Preston, A. R., & Love, B. C. (2019). Ventromedial prefrontal cortex compression during concept learning. bioRxiv.
  • Mandler, J. M. (1984). Stories, scripts, and scenes: Aspects of schema theory (Vol. 10). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Mcdonough, L., Mandler, J. M., Mckee, R. D., & Squire, L. R. (1995). The deferred imitation task as a nonverbal measure of declarative memory. Proceedings of the National Academy of Sciences, 92(16), 7580–7584.
  • McKenzie, S., Frank, A. J., Kinsky, N. R., Porter, B., Riviere, P. D., & Eichenbaum, H. (2014). Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas. Neuron, 83(1), 202–215.
  • Menon, V., Boyett-Anderson, J. M., & Reiss, A. L. (2005). Maturation of medial temporal lobe response and connectivity during memory encoding. Cognitive Brain Research, 25(1), 379–385.
  • Morton, N. W., Sherrill, K. R., & Preston, A. R. (2017). Memory integration constructs maps of space, time, and concepts. Current Opinion in Behavioral Sciences, 17, 161–168.
  • Murty, V. P., Calabro, F., & Luna, B. (2016). The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neuroscience & Biobehavioral Reviews, 70, 46–58.
  • Nelson, K. (1986). Event knowledge: Structure and function in development. Hillsdale, NJ: Lawrence Erlbaum.
  • Nelson, K. A., Fivush, R., Hudson, J. A., & Lucariello, J. (1983). Scripts and the development of memory. In M. T. H. Chi (Ed.), Contributions to human development: Trends in memory development research (pp. 52–70). Basel: Kargar.
  • Ngo, C. T., Lin, Y., Newcombe, N. S., & Olson, I. R. (2019). Building up and wearing down episodic memory: Mnemonic discrimination and relational binding. Journal of Experimental Psychology General, 148(9), 1463–1479.
  • Ostby, Y., Tamnes, C. K., Fjell, A. M., Westlye, L. T., Due-Tonnessen, P., & Walhovd, K. B. (2009). Heterogeneity in subcortical brain development: A structural magnetic resonance imaging study of brain maturation from 8 to 30 years. Journal of Neuroscience, 29(38), 11772–11782.
  • Pathman, T., & Ghetti, S. (2014). The eyes know time: A novel paradigm to reveal the development of temporal memory. Child Development, 85(2), 792–807.
  • Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., … Evans, A. C. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283(5409), 1908–1911.
  • Petanjek, Z., Judas, M., Simic, G., Rasin, M. R., Uylings, H. B., Rakic, P., & Kostovic, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences, 108(32), 13281–13286.
  • Peters, S. L., Fellows, L. K., & Sheldon, S. (2017). The ventromedial frontal lobe contributes to forming effective solutions to real-world problems. Journal of Cognitive Neuroscience, 29(6), 991–1001.
  • Piaget, J. (1954). The construction of reality in the child. New York: Basic.
  • Picard, L., Cousin, S., Guillery-Girard, B., Eustache, F., & Piolino, P. (2012). How do the different components of episodic memory develop? Role of executive functions and short-term feature-binding abilities. Child Development, 83(3), 1037–1050.
  • Place, R., Farovik, A., Brockmann, M., & Eichenbaum, H. (2016). Bidirectional prefrontal-hippocampal interactions support context-guided memory. Nature Neuroscience, 19(8), 992–994.
  • Preston, A. R., & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23(17), R764–R773.
  • Preston, A. R., Molitor, R. J., Pudhiyidath, A., & Schlichting, M. L. (2017). Schemas. In H. Eichenbaum (Ed.), Memory systems, vol. 3 of learning and memory: A comprehensive reference, 2nd edition, Byrne, J.H. (ed.) (pp. 125–132). Oxford: Academic Press.
  • Price, D. W. W., & Goodman, G. S. (1990). Visiting the wizard: Children’s memory for a recurring event. Child Development, 61(3), 664–680.
  • Pudhiyidath, A., Schapiro, A. C., Molitor, R. J., & Preston, A. R. (2018). Hippocampal representations of temporal statistics predict subsequent reasoning (Program No. 335.02). Neuroscience Meeting Planner. San Diego, CA: Society for Neuroscience. Online.
  • Quinn, P. C., Eimas, P. D., & Rosenkrantz, S. L. (1993). Evidence for representations of perceptually similar natural categories by 3-month-old and 4-month-old infants. Perception, 22(4), 463–475.
  • Rakison, D. H., & Poulin-dubois, D. (2002). You do this way and I’ll got that way: Developmental changed in infants’ detection of correlations among static and dynamic features in motion events. Child Development, 73(3), 682–699.
  • Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119(Pt 5), 1763–1774.
  • Riggins, T., Geng, F., Blankenship, S. L., & Redcay, E. (2016). Hippocampal functional connectivity and episodic memory in early childhood. Developmental Cognitive Neuroscience, 19, 58–69.
  • Ritvo, V. J. H., Turk-Browne, N. B., & Norman, K. A. (2019). Nonmonotonic plasticity: How memory retrieval drives learning. Trends in Cognitive Sciences, 23(9), 726–742.
  • Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928.
  • Sandoval, M., Leclerc, J. A., & Gómez, R. L. (2017). Words to sleep on: Naps facilitate verb generalization in habitually and nonhabitually napping preschoolers. Child Development, 88(5), 1615–1628.
  • Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M., & Turk-Browne, N. B. (2014). The necessity of the medial temporal lobe for statistical learning. Journal of Cognitive Neuroscience, 26(8), 1736–1747.
  • Schapiro, A. C., Kustner, L. V., & Turk-Browne, N. B. (2012). Shaping of object representations in the human medial temporal lobe based on temporal regularities. Current Biology, 22(17), 1622–1627.
  • Schapiro, A. C., McDevitt, E. A., Chen, L., Norman, K. A., Mednick, S. D., & Rogers, T. T. (2017). Sleep benefits memory for semantic category structure while preserving exemplar-specific information. Scientific Reports, 7(14869), 1–13.
  • Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B., & Botvinick, M. M. (2013). Neural representations of events arise from temporal community structure. Nature Neuroscience, 16(4), 486–492.
  • Schapiro, A. C., Turk-Browne, N. B., Botvinick, M. M., & Norman, K. A. (2017). Complementary learning systems within the hippocampus: A neural network modelling approach to reconciling episodic memory with statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160049.
  • Schapiro, A. C., Turk-Browne, N. B., Norman, K. A., & Botvinick, M. M. (2016). Statistical learning of temporal community structure in the hippocampus. Hippocampus, 26(1), 3–8.
  • Schlichting, M. L., Guarino, K. F., Schapiro, A. C., Turk-Browne, N. B., & Preston, A. R. (2017). Hippocampal structure predicts statistical learning and associative inference abilities during development. Journal of Cognitive Neuroscience, 29(1), 37–51.
  • Schlichting, M. L., Mumford, J. A., & Preston, A. R. (2015). Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nature Communications, 6, 8151.
  • Schlichting, M. L., & Preston, A. R. (2015). Memory integration: Neural mechanisms and implications for behavior. Current Opinion in Behavioral Sciences, 1, 1–8.
  • Schlichting, M. L., & Preston, A. R. (2016). Hippocampal-medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiology of Learning and Memory, 134, 91–106.
  • Schlichting, M. L., Zeithamova, D., & Preston, A. R. (2014). CA1 subfield contributions to memory integration and inference. Hippocampus, 24(10), 1248–1260.
  • Shohamy, D., & Turk-Browne, N. B. (2013). Mechanisms for widespread hippocampal involvement in cognition. Journal of Experimental Psychology: General, 142(4), 1159–1170.
  • Simmonds, D. J., Hallquist, M. N., Asato, M., & Luna, B. (2014). Developmental stages and sex differences of white matter and behavioral development through adolescence: A longitudinal diffusion tensor imaging (DTI) study. Neuroimage, 92, 356–368.
  • Sloutsky, V. M., Deng, S. W., Fisher, A. V., & Kloos, H. (2015). Conceptual influences on induction: A case for a late onset. Cognitive Psychology, 82, 1–31.
  • Sloutsky, V. M., & Fisher, A. V. (2004). When development and learning decrease memory. Evidence against category-based induction in children. Psychological Science, 15(8), 553–558.
  • Sloutsky, V. M., Kloos, H., & Fisher, A. V. (2007). When looks are everything: Appearance similarity versus kind information in early induction. Psychological Science, 18, 179–185.
  • Sluzenski, J., Newcombe, N. S., & Kovacs, S. L. (2006). Binding, relational memory, and recall of naturalistic events: A developmental perspective. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(1), 89–100.
  • Spalding, K. N., Jones, S. H., Duff, M. C., Tranel, D., & Warren, D. E. (2015). Investigating the neural correlates of schemas: Ventromedial prefrontal cortex is necessary for normal schematic influence on memory. The Journal of Neuroscience, 35(47), 15746–15751.
  • Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017). The hippocampus as a predictive map. Nature Neuroscience, 20(11), 1643–1653.
  • Tang, L., Shafer, A. T., & Ofen, N. (2018). Prefrontal cortex contributions to the development of memory formation. Cerebral Cortex, 28(9), 3295–3308.
  • Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189–208.
  • Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., … Morris, R. G. (2007). Schemas and memory consolidation. Science, 316(5821), 76–82.
  • Tse, D., Takeuchi, T., Kakeyama, M., Kajii, Y., Okuno, H., Tohyama, C., … Morris, R. G. (2011). Schema-dependent gene activation and memory encoding in neocortex. Science, 333(6044), 891–895.
  • Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247(4940), 301–306.
  • Turk-Browne, N. B., Jungé, J. A., & Scholl, B. J. (2005). The automaticity of visual statistical learning. Journal of Experimental Psychology: General, 134(4), 552–564.
  • van Kesteren, M. T., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends in Neurosciences, 35(4), 211–219.
  • Varga, N. L., Morton, N. W., & Preston, A. R. (in press). Schema, inference, and memory. In M. J. Kahana & A. D. Wagner (Eds.), Handbook on human memory. Oxford University Press.
  • Voss, J. L., O’Neil, J. T., Kharitonova, M., Briggs-Gowan, M. J., & Wakschlag, L. S. (2015). Adolescent development of context-dependent stimulus-reward association memory and its neural correlates. Frontiers in Human Neuroscience, 9, 581.
  • Wang, S.-H., & Morris, R. G. M. (2010). Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annual Review of Psychology, 61, 49–79.
  • Wiebe, S. A., & Bauer, P. J. (2005). Interference from additional props in an elicited imitation task: When in sight, firmly in mind. Journal of Cognition and Development, 6(3), 325–363.
  • Wikenheiser, A. M., & Schoenbaum, G. (2016). Over the river, through the woods: Cognitive maps in the hippocampus and orbitofrontal cortex. Nature Reviews Neuroscience, 17(8), 513–523.
  • Wilhelm, I., Rose, M., Imhof, K. I., Rasch, B., Büchel, C., & Born, J. (2013). The sleeping child outplays the adult’s capacity to convert implicit into explicit knowledge. Nature Neuroscience, 16(4), 391–393.
  • Wimmer, G. E., & Shohamy, D. (2012). Preference by association: How memory mechanisms in the hippocampus bias decisions. Science, 338(6104), 270–273.
  • Yu, C., & Smith, L. B. (2011). What you learn is what you see: Using eye movements to study infant cross-situational word learning. Developmental Science, 14(2), 165–180.
  • Zacks, J. M. (In press). Event perception and memory. Annual Review of Psychology.
  • Zeithamova, D., Dominick, A. L., & Preston, A. R. (2012). Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron, 75(1), 168–179.
  • Zeithamova, D., & Preston, A. R. (2017). Temporal proximity promotes integration of overlapping events. Journal of Cognitive Neuroscience, 29(8), 1311–1323.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.