1,079
Views
7
CrossRef citations to date
0
Altmetric
Articles

The brain regions supporting schema-related processing of people’s identities

, , &
Pages 8-24 | Received 06 May 2019, Accepted 22 Oct 2019, Published online: 11 Nov 2019

References

  • Ames, D. L., Honey, C. J., Chow, M. A., Todorov, A., & Hasson, U. (2015). Contextual alignment of cognitive and neural dynamics. Journal of Cognitive Neuroscience, 27(4), 655–664. doi: 10.1162/jocn_a_00728
  • Andersson, J. L. R., Hutton, C., Ashburner, J., Turner, R., & Friston, K. (2001). Modeling geometric deformations in EPI time series. NeuroImage, 13(5), 903–919. doi: 10.1006/nimg.2001.0746
  • Andersson, J. L. R., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. NeuroImage, 20(2), 870–888. doi: 10.1016/S1053-8119(03)00336-7
  • Axelrod, V., & Yovel, G. (2015). Successful decoding of famous faces in the fusiform face area. PLOS ONE, 10(2), e0117126. doi: 10.1371/journal.pone.0117126
  • Baldassano, C., Hasson, U., & Norman, K. A. (2018). Representation of real-world event schemas during narrative perception. Journal of Neuroscience, 38(45), 9689–9699. doi: 10.1523/JNEUROSCI.0251-18.2018
  • Bein, O., Reggev, N., & Maril, A. (2014). Prior knowledge influences on hippocampus and medial prefrontal cortex interactions in subsequent memory. Neuropsychologia, 64, 320–330. doi: 10.1016/j.neuropsychologia.2014.09.046
  • Benoit, R. G., Gilbert, S. J., Volle, E., & Burgess, P. W. (2010). When I think about me and simulate you: Medial rostral prefrontal cortex and self-referential processes. NeuroImage, 50(3), 1340–1349. doi: 10.1016/j.neuroimage.2009.12.091
  • Bird, C. M., Davies, R. A., Ward, J., & Burgess, N. (2011). Effects of pre-experimental knowledge on recognition memory. Learning & Memory (Cold Spring Harbor, N.Y.), 18(1), 11–14. doi: 10.1101/lm.1952111
  • Bird, C. M., Keidel, J. L., Ing, X. L. P., Horner, X. A. J., & Burgess, N. (2015). Consolidation of complex events via reinstatement in posterior cingulate cortex. Journal of Neuroscience, 35(43), 14426–14434. doi: 10.1523/JNEUROSCI.1774-15.2015
  • Brod, G., Lindenberger, U., Wagner, A. D., & Shing, Y. L. (2016). Knowledge acquisition during exam preparation improves memory and modulates memory formation. Journal of Neuroscience, 36(31), 8103–8111. doi: 10.1523/JNEUROSCI.0045-16.2016
  • Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77(3), 305–327. doi: 10.1111/j.2044-8295.1986.tb02199.x
  • Ciaramelli, E., Ghetti, S., Frattarelli, M., & Làdavas, E. (2006). When true memory availability promotes false memory: Evidence from confabulating patients. Neuropsychologia, 44(10), 1866–1877. doi: 10.1016/j.neuropsychologia.2006.02.008
  • Davis, T., LaRocque, K. F., Mumford, J. A., Norman, K. A., Wagner, A. D., & Poldrack, R. A. (2014). What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis. NeuroImage, 97, 271–283. doi: 10.1016/J.NEUROIMAGE.2014.04.037
  • Diedrichsen, J., & Shadmehr, R. (2005). Detecting and adjusting for artifacts in fMRI time series data. NeuroImage, 27(3), 624–634. doi: 10.1016/j.neuroimage.2005.04.039
  • di Oleggio Castello, M. V., Halchenko, Y. O., Guntupalli, J. S., Gors, J. D., & Gobbini, M. I. (2017). The neural representation of personally familiar and unfamiliar faces in the distributed system for face perception. Scientific Reports, 7(1), 12237. doi: 10.1038/s41598-017-12559-1
  • Elfgren, C., van Westen, D., Passant, U., Larsson, E.-M., Mannfolk, P., & Fransson, P. (2006). fMRI activity in the medial temporal lobe during famous face processing. NeuroImage, 30(2), 609–616. doi: 10.1016/j.neuroimage.2005.09.060
  • Esterman, M., Tamber-Rosenau, B. J., Chiu, Y.-C., & Yantis, S. (2010). Avoiding non-independence in fMRI data analysis: Leave one subject out. NeuroImage, 50(2), 572–576. doi: 10.1016/j.neuroimage.2009.10.092
  • Ghosh, V. E., & Gilboa, A. (2014). What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia, 53(1), 104–114. doi: 10.1016/j.neuropsychologia.2013.11.010
  • Ghosh, V. E., Moscovitch, M., Melo Colella, B., Gilboa, A., Colella, B. M., & Gilboa, A. (2014). Schema representation in patients with ventromedial PFC lesions. Journal of Neuroscience, 34(36), 12057–12070. doi: 10.1523/JNEUROSCI.0740-14.2014
  • Gilboa, A., & Marlatte, H. (2017). Neurobiology of schemas and schema-mediated memory. Trends in Cognitive Sciences, 21(8), 618–631. doi: 10.1016/j.tics.2017.04.013
  • Greve, A., Cooper, E., Tibon, R., & Henson, R. N. (2019). Knowledge is power: Prior knowledge aids memory for both congruent and incongruent events, but in different ways. Journal of Experimental Psychology. General, 148(2), 325–341. doi: 10.1037/xge0000498
  • Ishai, A. (2008). Let’s face it: It’sa cortical network. NeuroImage, 40(2), 415–419. doi: 10.1016/j.neuroimage.2007.10.040
  • Ishai, A., Haxby, J. V., & Ungerleider, L. G. (2002). Visual imagery of famous faces: Effects of memory and attention revealed by fMRI. NeuroImage, 17(4), 1729–1741. doi: 10.1006/nimg.2002.1330
  • Jenkins, A. C., Macrae, C. N., & Mitchell, J. P. (2008). Repetition suppression of ventromedial prefrontal activity during judgments of self and others. Proceedings of the National Academy of Sciences, 105(11), 4507–4512. doi: 10.1073/pnas.0708785105
  • Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 17(11), 4302–4311. doi: 10.1523/JNEUROSCI.17-11-04302.1997
  • Keidel, J. L., Oedekoven, C. S. H., Tut, A. C., & Bird, C. M. (2018). Multiscale integration of contextual information during a naturalistic task. Cerebral Cortex, 28(10), 3531–3539. doi: 10.1093/cercor/bhx218
  • Klatzky, R. L., & Forrest, F. H. (1984). Recognizing familiar and unfamiliar faces. Memory & Cognition, 12(1), 60–70. doi: 10.3758/BF03196998
  • Koen, J. D., Hauck, N., & Rugg, M. D. (2019). The relationship between age, neural differentiation, and memory performance. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 39(1), 149–162. doi: 10.1523/JNEUROSCI.1498-18.2018
  • Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis - connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4. doi: 10.3389/neuro.06.004.2008
  • Krienen, F. M., Tu, P.-C., & Buckner, R. L. (2010). Clan mentality: Evidence that the medial prefrontal cortex responds to close others. Journal of Neuroscience, 30(41), 13906–13915. doi: 10.1523/JNEUROSCI.2180-10.2010
  • Liu, Z.-X., Grady, C., & Moscovitch, M. (2016). Effects of prior-knowledge on brain activation and connectivity during associative memory encoding. Cerebral Cortex, 27(3), 1991–2009. doi: 10.1093/cercor/bhw047
  • Maguire, E. A., Frith, C. D., & Morris, R. G. M. (1999). The functional neuroanatomy of comprehension and memory: The importance of prior knowledge. Brain, 122(10), 1839–1850. doi: 10.1093/brain/122.10.1839
  • McAndrews, M. P., Girard, T. A., Wilkins, L. K., & McCormick, C. (2016). Semantic congruence affects hippocampal response to repetition of visual associations. Neuropsychologia, 90, 235–242. doi: 10.1016/j.neuropsychologia.2016.07.026
  • McCormick, C., Ciaramelli, E., De Luca, F., & Maguire, E. A. (2018). Comparing and contrasting the cognitive effects of hippocampal and ventromedial prefrontal cortex damage: A review of human lesion studies. Neuroscience, 374, 295–318. doi: 10.1016/j.neuroscience.2017.07.066
  • McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches. NeuroImage, 61(4), 1277–1286. doi: 10.1016/j.neuroimage.2012.03.068
  • Melo, B., Winocur, G., & Moscovitch, M. (1999). False recall and false recognition: An examination of the effects of selective and combined lesions to the medial temporal lobe/diencephalon and frontal lobe structures. Cognitive Neuropsychology, 16(3–5), 343–359. doi: 10.1080/026432999380825
  • Nadel, L., Hoscheidt, S., & Ryan, L. R. (2013). Spatial cognition and the hippocampus: The anterior–posterior axis. Journal of Cognitive Neuroscience, 25(1), 22–28. doi: 10.1162/jocn_a_00313
  • Oosterhof, N. N., Connolly, A. C., & Haxby, J. V. (2016). CoSMoMVPA: Multi-modal multivariate pattern analysis of neuroimaging data in matlab/GNU octave. Frontiers in Neuroinformatics, 10, 27. doi: 10.3389/fninf.2016.00027
  • Poppenk, J., McIntosh, A. R., Craik, F. I. M., & Moscovitch, M. (2010). Past experience modulates the neural mechanisms of episodic memory formation. Journal of Neuroscience, 30(13), 4707–4716. doi: 10.1523/JNEUROSCI.5466-09.2010
  • Preston, A. R., & Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal cortex in memory. Current Biology, 23(17), R764–R773. doi: 10.1016/j.cub.2013.05.041
  • Preston, A. R., Shrager, Y., Dudukovic, N. M., & Gabrieli, J. D. E. (2004). Hippocampal contribution to the novel use of relational information in declarative memory. Hippocampus, 14(2), 148–152. doi: 10.1002/hipo.20009
  • Ramon, M., & Gobbini, M. I. (2018). Familiarity matters: A review on prioritized processing of personally familiar faces. Visual Cognition, 26(3), 179–195. doi: 10.1080/13506285.2017.1405134
  • Ranganath, C., & Ritchey, M. (2012). Two cortical systems for memory-guided behaviour. Nature Reviews Neuroscience, 13(10), 713–726. doi: 10.1038/nrn3338
  • Raykov, P. P., Keidel, J. L., Oakhill, J., & Bird, C. M. (2018). Shared contextual knowledge strengthens inter-subject synchrony and pattern similarity in the semantic network. BioRxiv, 276683.
  • Renoult, L., Davidson, P. S. R., Palombo, D. J., Moscovitch, M., & Levine, B. (2012). Personal semantics: At the crossroads of semantic and episodic memory. Trends in Cognitive Sciences, 16(11), 550–558. doi: 10.1016/j.tics.2012.09.003
  • Renoult, L., Davidson, P. S. R., Schmitz, E., Park, L., Campbell, K., Moscovitch, M., & Levine, B. (2015). Autobiographically significant concepts: More episodic than semantic in nature? An electrophysiological investigation of overlapping types of memory. Journal of Cognitive Neuroscience, 27(1), 57–72. doi: 10.1162/jocn_a_00689
  • Ritchey, M., Libby, L. A., & Ranganath, C. (2015). Cortico-hippocampal systems involved in memory and cognition: The PMAT framework. Progress in Brain Research, 219, 45–64.
  • Ritchey, M., Montchal, M. E., Yonelinas, A. P., & Ranganath, C. (2015). Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval. Elife, 4, e05025. doi: 10.7554/eLife.05025
  • Robin, J., Buchsbaum, B. R., & Moscovitch, M. (2018). The primacy of spatial context in the neural representation of events. Journal of Neuroscience, 38(11), 2755–2765. doi: 10.1523/JNEUROSCI.1638-17.2018
  • Robin, J., & Moscovitch, M. (2017). Details, gist and schema: Hippocampal–neocortical interactions underlying recent and remote episodic and spatial memory. Current Opinion in Behavioral Sciences, 17, 114–123. doi: 10.1016/j.cobeha.2017.07.016
  • Schlichting, M. L., Mumford, J. A., & Preston, A. R. (2015). Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nature Communications, 6, 8151. doi: 10.1038/ncomms9151
  • Schlichting, M. L., & Preston, A. R. (2016). Hippocampal–medial prefrontal circuit supports memory updating during learning and post-encoding rest. Neurobiology of Learning and Memory, 134, 91–106. doi: 10.1016/j.nlm.2015.11.005
  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., … Flitney, D. E. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208–S219. doi: 10.1016/j.neuroimage.2004.07.051
  • Snodgrass, J. G., Levy-Berger, G., & Haydon, M. (1985). Human experimental psychology (Vol. 395). New York, NY: Oxford University Press.
  • Sommer, T. (2016). The emergence of knowledge and how it supports the memory for novel related information. Cerebral Cortex, 27(3), 1906–1921. doi: 10.1093/cercor/bhw031
  • Spalding, K. N., Jones, S. H., Duff, M. C., Tranel, D., & Warren, D. E. (2015). Investigating the neural correlates of schemas: Ventromedial prefrontal cortex is necessary for normal schematic influence on memory. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(47), 15746–15751. doi: 10.1523/JNEUROSCI.2767-15.2015
  • St-Laurent, M., Abdi, H., Bondad, A., & Buchsbaum, B. R. (2014). Memory reactivation in healthy aging: Evidence of stimulus-specific dedifferentiation. Journal of Neuroscience, 34(12), 4175–4186. doi: 10.1523/JNEUROSCI.3054-13.2014
  • Stark, C. E. L., & Squire, L. R. (2001). When zero is not zero: The problem of ambiguous baseline conditions in fMRI. Proceedings of the National Academy of Sciences, 98(22), 12760. doi: 10.1073/pnas.221462998
  • Stolier, R. M., & Freeman, J. B. (2016). Neural pattern similarity reveals the inherent intersection of social categories. Nature Neuroscience, 19(6), 795–797. doi: 10.1038/nn.4296
  • Strange, B. A., Witter, M. P., Lein, E. S., & Moser, E. I. (2014). Functional organization of the hippocampal longitudinal axis. Nature Reviews Neuroscience, 15(10), 655–669. doi: 10.1038/nrn3785
  • Todorov, A., Olivola, C. Y., Dotsch, R., & Mende-Siedlecki, P. (2015). Social attributions from faces: Determinants, consequences, accuracy, and functional significance. Annual Review of Psychology, 66, 519–545. doi: 10.1146/annurev-psych-113011-143831
  • Trinkler, I., King, J. A., Doeller, C. F., Rugg, M. D., & Burgess, N. (2009). Neural bases of autobiographical support for episodic recollection of faces. Hippocampus, 19(8), 718–730. doi: 10.1002/hipo.20556
  • Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., … Morris, R. G. M. (2007). Schemas and memory consolidation. Science, 316(5821), 76–82. doi: 10.1126/science.1135935
  • Tse, D., Takeuchi, T., Kakeyama, M., Kajii, Y., Okuno, H., Tohyama, C., … Morris, R. G. M. (2011). Schema-dependent gene activation and memory encoding in neocortex. Science, 333(6044), 891–895. doi: 10.1126/science.1205274
  • van Kesteren, M. T. R., Beul, S. F., Takashima, A., Henson, R. N., Ruiter, D. J., & Fernández, G. (2013). Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: From congruent to incongruent. Neuropsychologia, 51(12), 2352–2359. doi: 10.1016/j.neuropsychologia.2013.05.027
  • van Kesteren, M. T. R., Fernández, G., Norris, D. G., & Hermans, E. J. (2010). Persistent schema-dependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proceedings of the National Academy of Sciences, 107(16), 7550–7555. doi: 10.1073/pnas.0914892107
  • van Kesteren, M. T. R., Rijpkema, M., Ruiter, D. J., Morris, R. G., & Fernandez, G. (2014). Building on prior knowledge: Schema-dependent encoding processes relate to academic performance. Journal of Cognitive Neuroscience, 26(10), 2250–2261. doi: 10.1162/jocn_a_00630
  • van Kesteren, M. T. R., Ruiter, D. J., Fernández, G., Henson, R. N., Fernandez, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends in Neurosciences, 35(4), 211–219. doi: 10.1016/j.tins.2012.02.001
  • Van Overschelde, J. P., Rawson, K. A., Dunlosky, J., & Hunt, R. R. (2005). Distinctive processing underlies skilled memory. Psychological Science, 16(5), 358–361. doi: 10.1111/j.0956-7976.2005.01540.x
  • Visser, M., Jefferies, E., & Lambon Ralph, M. A. (2010). Semantic processing in the anterior temporal lobes: A meta-analysis of the functional neuroimaging literature. Journal of Cognitive Neuroscience, 22(6), 1083–1094. doi: 10.1162/jocn.2009.21309
  • Von Der Heide, R. J., Skipper, L. M., & Olson, I. R. (2013). Anterior temporal face patches: A meta-analysis and empirical study. Frontiers in Human Neuroscience, 7. doi: 10.3389/fnhum.2013.00017
  • Wagner, I. C., Buuren, V., Kroes, M. C. W., Gutteling, T. P., Linden, M. V. D., Morris, R. G., … Fernández, G. (2015). Schematic memory components converge within angular gyrus during retrieval. Elife, 4, e09668. doi: 10.7554/eLife.09668
  • Warren, D. E., Jones, S. H., Duff, M. C., & Tranel, D. (2014). False recall is reduced by damage to the ventromedial prefrontal cortex: Implications for understanding the neural correlates of schematic memory. Journal of Neuroscience, 34(22), 7677–7682. doi: 10.1523/JNEUROSCI.0119-14.2014
  • Westmacott, R., Black, S. E., Freedman, M., & Moscovitch, M. (2004). The contribution of autobiographical significance to semantic memory: Evidence from Alzheimer’s disease, semantic dementia, and amnesia. Neuropsychologia, 42(1), 25–48. doi: 10.1016/S0028-3932(03)00147-7
  • Westmacott, R., & Moscovitch, M. (2003). The contribution of autobiographical significance to semantic memory. Memory & Cognition, 31(5), 761–774. doi: 10.3758/BF03196114
  • Zeithamova, D., de Araujo Sanchez, M.-A., & Adke, A. (2017). Trial timing and pattern-information analyses of fMRI data. Neuroimage, 153, 221–231. doi: 10.1016/j.neuroimage.2017.04.025
  • Zeithamova, D., Dominick, A. L., & Preston, A. R. (2012). Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron, 75(1), 168–179. doi: 10.1016/j.neuron.2012.05.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.