811
Views
8
CrossRef citations to date
0
Altmetric
Articles

Does nature make provision for backups in the modification of bacterial community structures?

Pages 31-48 | Received 18 Dec 2013, Accepted 17 Mar 2014, Published online: 14 Jul 2014

References

  • Adediran, J. A., de Baets, N., Mnkeni, P. N. S., Kiekens, L., Muyima, N. Y. O., & Thys, A. (2003). Organic waste materials for soil fertility improvement in the border region of the Eastern Cape, South Africa. Biological Agriculture & Horticulture, 20, 283–300.
  • Ahrenholtz, I., Harms, K., de Vries, J., & Wackernagel, W. (2000). Increased killing of Bacillus subtilis on the hair roots of transgenic T4 lysozyme-producing potatoes. Applied and Environmental Microbiology, 66, 1862–1865.
  • Alexandrino, M., Macías, F., Costa, R., Gomes, N. C. M., Canário, A. V. M., & Costa, M. C. (2011). A bacterial consortium isolated from an Icelandic fumarole displays exceptionally high levels of sulfate reduction and metals resistance. Journal of Hazardous Materials, 187, 362–370.
  • Alvey, S., Yang, C. H., Buerkert, A., & Crowley, D. E. (2003). Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biology and Fertility of Soils, 37, 73–82.
  • Asuming-Brempong, S., Gantner, S., Adiku, S. G. K., Archer, G., Edusei, V., & Tiedje, J. M. (2008). Changes in the biodiversity of microbial populations in tropical soils under different fallow treatments. Soil Biology & Biochemistry, 40, 2811–2818.
  • Azziz, G., Bajsa, N., Haghjou, T., Taulé, C., Valverde, Á., Igual, J. M., & Arias, A. (2012). Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no-tillage regime in Uruguay. Applied Soil Ecology, 61, 320–326.
  • Babalola, O. O., & Glick, B. R. (2012). Indigenous African agriculture and plant associated microbes: Current practice and future transgenic prospects. Scientific Research and Essays, 7, 2431–2439.
  • Babalola, O. O., Osir, E. O., Sanni, A. I., Odhiambo, G. D., & Bulimo, W. D. (2003). Amplification of 1-amino-cyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. African Journal of Biotechnology, 2, 157–160.
  • Babalola, O. O., Sanni, A. I., Odhiambo, G. D., & Torto, B. (2007). Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World Journal of Microbiology & Biotechnology, 23, 747–752.
  • Barcellos, F. G., Menna, P., Batista, J. S. D., & Hungria, M. (2007). Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Applied and Environmental Microbiology, 73, 2635–2643.
  • Batista, J. S. S., Hungria, M., Barcellos, F. G., Ferreira, M. C., & Mendes, I. C. (2007). Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic microsymbiont and the soybean host in a cerrados soil. Microbial Ecology, 53, 270–284.
  • Baudoin, E., Benizri, E., & Guckert, A. (2002). Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Applied Soil Ecology, 19, 135–145.
  • Baudoin, E., Nazaret, S., Mougel, C., Ranjard, L., & Moënne-Loccoz, Y. (2009). Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biology and Biochemistry, 41, 409–413.
  • Blanco, A. R., Sicardi, M., & Frioni, L. (2010). Competition for nodule occupancy between introduced and native strains of Rhizobium leguminosarum biovar trifolii. Biology and Fertility of Soils, 46, 419–425.
  • Boddey, L. H., & Hungria, M. (1997). Phenotypic grouping of Brazilian Bradyrhizobium strains which nodulate soybean. Biological Fertility Soils, 25, 407–415.
  • Botelho, G. R., Guimaraes, V., de Bonis, M., Fonseca, M. E. F., Hagler, A. N., & Hagler, L. C. M. (1998). Ecology of a plant growth-promoting strain of Pseudomonas fluorescens colonizing the maize endorhizosphere in tropical soil. World Journal of Microbiology & Biotechnology, 14, 499–504.
  • Bumunang, E. W., Babalola, O. O., & Barros, E. (2013). Bacterial community profiling in the rhizosphere of field grown GM and non-GM maize. Journal of Pure and Applied Microbiology, 7, 157–164.
  • Chemining’wa, G. N., & Vessey, J. K. (2006). The abundance and efficacy of Rhizobium leguminosarum bv. viciae in cultivated soils of the eastern Canadian prairie. Soil Biology & Biochemistry, 38, 294–302.
  • Ciccillo, F., Fiore, A., Bevivino, A., Dalmastri, C., Tabacchioni, S., & Chiarini, L. (2002). Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environmental Microbiology, 4, 238–245.
  • Cordier, C., & Alabouvette, C. (2009). Effects of the introduction of a biocontrol strain of Trichoderma atroviride on non target soil micro-organisms. European Journal of Soil Biology, 45, 267–274.
  • Curl, E. A., & Truelove, B. (1986). The rhizosphere. New York, NY: Springer-Verlag.
  • Denton, M., Pearce, D., Ballard, R. A., Hannah, M. C., Mutch, L. A., Norng, S., & Slattery, J. F. (2009). A multi-site field evaluation of granular inoculants for legume nodulation. Soil Biology & Biochemistry, 41, 2508–2516.
  • Dicello, F., Bevivino, A., Chiarini, L., Fani, R., Paffetti, D., Tabacchioni, S., & Dalmastri, C. (1997). Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Applied and Environmental Microbiology, 63, 4485–4493.
  • Drew, E. A., & Ballard, R. A. (2010). Improving N-2 fixation from the plant down: Compatibility of Trifolium subterraneum L. cultivars with soil rhizobia can influence symbiotic performance. Plant and Soil, 327, 261–277.
  • Dunfield, K. E., & Germida, J. J. (2001). Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. Fems Microbiology Ecology, 38, 1–9.
  • Dungan, R. S., Kim, L. S., Weon, H. Y., & Leytem, A. B. (2009). The characterization and composition of bacterial communities in soils blended with spent foundry sand. Annals of Microbiology, 59, 239–246.
  • Fang, J. G., Chao, C. C. T., Roberts, P. A., & Ehlers, J. D. (2007). Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genetic Resources and Crop Evolution, 54, 1197–1209.
  • Ferreira, M. C., Andrade, D. D., Chueire, L. M. D., Takemura, S. M., & Hungria, M. (2000). Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biology & Biochemistry, 32, 627–637.
  • Godoy, L. P., Vasconcelos, A. T. R., Chueire, L. M. O., Souza, R. C., Nicolas, M. F., Barcellos, F. G., & Hungria, M. (2008). Genomic panorama of Bradyrhizobium japonicum CPAC 15, a commercial inoculant strain largely established in Brazilian soils and belonging to the same serogroup as USDA 123. Soil Biology & Biochemistry, 40, 2743–2753.
  • Hedlund, K. (2002). Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biology & Biochemistry, 34, 1299–1307.
  • Herschkovitz, Y., Lerner, A., Davidov, Y., Okon, Y., & Jurkevitch, E. (2005). Azospirillum brasilense does not affect population structure of specific rhizobacterial communities of inoculated maize (Zea mays). Environmental Microbiology, 7, 1847–1852.
  • Heuer, H., Kroppenstedt, R. M., Lottmann, J., Berg, G., & Smalla, K. (2002). Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere relative to communities are negligible natural factors. Applied and Environmental Microbiology, 68, 1325–1335.
  • Hong, Y. W., Pasternak, J. J., & Glick, B. R. (1995). Overcoming the metabolic load associated with the presence of plasmid DNA in the plant-growth promoting rhizobacterium Pseudomonas putida Gr12-2. Canadian Journal of Microbiology, 41, 624–628.
  • Hontzeas, N., Richardson, A. O., Belimov, A., Safronova, V., Abu-Omar, M. M., & Glick, B. R. (2005). Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Applied and Environmental Microbiology, 71, 7556–7558.
  • Icoz, I., & Stotzky, G. (2008). Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biology and Biochemistry, 40, 559–586.
  • Keeling, P. J. (2009). Functional and ecological impacts of horizontal gene transfer in eukaryotes. Current Opinion in Genetics and Development, 19, 613–619.
  • Kennedy, I. R., Choudhury, A., & Kecskes, M. L. (2004). Non-symbiotic bacterial diazotrophs in crop-farming systems: Can their potential for plant growth promotion be better exploited? Soil Biology & Biochemistry, 36, 1229–1244.
  • Khantsi, M., Adegboye, M. F., & Babalola, O. O. (2013). 1-Aminocyclopropane-1-carboxylate deaminase activity as a marker for identifying plant-growth promoting rhizobacteria in cultivated soil. Asian Life Sciences, 9, 199–211.
  • Kleter, G. A., Groot, M. J., Poelman, M., Kok, E. J., & Marvin, H. J. P. (2009). Timely awareness and prevention of emerging chemical and biochemical risks in foods: Proposal for a strategy based on experience with recent cases. Food and Chemical Toxicology, 47, 992–1008.
  • Kozdroj, J., Trevors, J. T., & van Elsas, J. D. (2004). Influence of introduced potential biocontrol agents on maize seedling growth and bacterial community structure in the rhizosphere. Soil Biology & Biochemistry, 36, 1775–1784.
  • Lamb, E. G., Kennedy, N., & Siciliano, S. D. (2011). Effects of plant species richness and evenness on soil microbial community diversity and function. Plant and Soil, 338, 483–495.
  • Le Curieux-Belfond, O., Vandelac, L., Caron, J., & Séralini, G.-É. (2009). Factors to consider before production and commercialization of aquatic genetically modified organisms: The case of transgenic salmon. Environmental Science and Policy, 12, 170–189.
  • Li, J. M., & Kremer, R. J. (2000). Rhizobacteria associated with weed seedlings in different cropping systems. Weed Science, 48, 734–741.
  • Li, Q. H., Wu, F. Z., Yang, Y., & Wang, X. Z. (2009). Effects of rotation and interplanting on soil bacterial communities and cucumber yield. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 59, 431–439.
  • Lilley, A. K., Bailey, M. J., Cartwright, C., Turner, S. L., & Hirsch, P. R. (2006). Life in earth: the impact of GM plants on soil ecology? Trends in Biotechnology, 24, 9–14.
  • Lottmann, J., & Berg, G. (2001). Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and non-transgenic potato plants. Microbiological Research, 156, 75–82.
  • Lottmann, J., Heuer, H., de Vries, J., Mahn, A., During, K., Wackernagel, W., Smalla, K., & Berg, G. (2000). Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. Fems Microbiology Ecology, 33, 41–49.
  • Lugtenberg, B. J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol, 39, 461–490.
  • Lupwayi, N. Z., Hanson, K. G., Harker, K. N., Clayton, G. W., Blackshaw, R. E., O’Donovan, J. T., … Monreal, M. A. (2007). Soil microbial biomass, functional diversity and enzyme activity in glyphosate-resistant wheat-canola rotations under low-disturbance direct seeding and conventional tillage. Soil Biology & Biochemistry, 39, 1418–1427.
  • Lupwayi, N. Z., Harker, K. N., Clayton, G. W., O’Donovan, J. T., & Blackshaw, R. E. (2009). Soil microbial response to herbicides applied to glyphosate-resistant canola. Agriculture Ecosystems & Environment, 129, 171–176.
  • Lupwayi, N. Z., Rice, W. A., & Clayton, G. W. (1998). Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biology & Biochemistry, 30, 1733–1741.
  • Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial communities of the rhizosphere and endorhiza associated with field-grown cucumber plants inoculated with a plant growth-promoting rhizobacterium or its genetically modified derivative. Canadian Journal of Microbiology, 43, 344–353.
  • Marilley, L., Hartwig, U. A., & Aragno, M. (1999). Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microbial Ecology, 38, 39–49.
  • Mazzola, M., Funnell, D. L., & Raaijmakers, J. M. (2004). Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microbial Ecology, 48, 338–348.
  • Miethling, R., Wieland, G., Backhaus, H., & Tebbe, C. C. (2000). Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecology, 40, 43–56.
  • Moenne-Loccoz, Y., Tichy, H. V., O’donnell, A., Simon, R., & O’gara, F. (2001). Impact of 2,4-diacetylphloroglucinol-producing biocontrol strain Pseudomonas fluorescens F113 on intraspecific diversity of resident culturable fluorescent pseudomonads associated with the roots of field-grown sugar beet seedlings. Applied and Environmental Microbiology, 67, 3418–3425.
  • Morrissey, J. P., Walsh, U. F., O’donnell, A., Moenne-Loccoz, Y., & O’gara, F. (2002). Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 81, 599–606.
  • Natsch, A., Keel, C., Hebecker, N., Laasik, E., & Defago, G. (1997). Influence of biocontrol strain Pseudomonas fluorescens CHA0 and its antibiotic overproducing derivative on the diversity of resident root colonizing pseudomonads. Fems Microbiology Ecology, 23, 341–352.
  • Normander, B., & Prosser, J. I. (2000). Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Applied and Environmental Microbiology, 66, 4372–4377.
  • Oger, P., Mansouri, H., & Dessaux, Y. (2000). Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Molecular Ecology, 9, 881–890.
  • Pagliaccia, D., Merhaut, D., Colao, M. C., Ruzzi, M., Saccardo, F., & Stanghellini, M. E. (2008). Selective enhancement of the fluorescent pseudomonad population after amending the recirculating nutrient solution of hydroponically grown plants with a nitrogen stabilizer. Microbial Ecology, 56, 538–554.
  • Paoletti, M. G., & Pimentel, D. (1996). Genetic engineering in agriculture and the environment. BioScience, 46, 665–673.
  • Picard, C., di Cello, F., Ventura, M., Fani, R., & Guckert, A. (2000). Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Applied and Environmental Microbiology, 66, 948–955.
  • Plassart, P., Vinceslas, M. A., Gangneux, C., Mercier, A., Barray, S., & Laval, K. (2008). Molecular and functional responses of soil microbial communities under grassland restoration. Agriculture Ecosystems & Environment, 127, 286–293.
  • Rasche, F., Marco-Noales, E., Velvis, H., van Overbeek, L. S., Lopez, M. M., van Elsas, J. D., & Sessitsch, A. (2006). Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant and Soil, 289, 123–140.
  • Roesti, D., Gaur, R., Johri, B. N., Imfeld, G., Sharma, S., Kawaljeet, K., & Aragno, M. (2006). Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biology & Biochemistry, 38, 1111–1120.
  • Sang, M. K., & Kim, K. D. (2012). Plant growth-promoting rhizobacteria suppressive to Phytophthora blight affect microbial activities and communities in the rhizosphere of pepper (Capsicum annuum L.) in the field. Applied Soil Ecology, 62, 88–97.
  • Scherwinski, K., Grosch, R., & Berg, G. (2008). Effect of bacterial antagonists on lettuce: Active biocontrol of Rhizoctonia solani and negligible, short-term effects on nontarget microorganisms. Fems Microbiology Ecology, 64, 106–116.
  • Schmalenberger, A., Hodge, S., Hawkesford, M. J., & Kertesz, M. A. (2009). Sulfonate desulfurization in Rhodococcus from wheat rhizosphere communities. Fems Microbiology Ecology, 67, 140–150.
  • Schwieger, F., & Tebbe, C. C. (2000). Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album) – Linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Applied and Environmental Microbiology, 66, 3556–3565.
  • Seldin, L., Rosado, A. S., da Cruz, D. W., Nobrega, A., van Elsas, J. D., & Paiva, E. (1998). Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non-root-associated soil from maize planted in two different Brazilian soils. Applied and Environmental Microbiology, 64, 3860–3868.
  • Sessitsch, A., Reiter, B., & Berg, G. (2004). Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Canadian Journal of Microbiology, 50, 239–249.
  • Singh, B. K., Dawson, L. A., Macdonald, C. A., & Buckland, S. M. (2009). Impact of biotic and abiotic interaction on soil microbial communities and functions: A field study. Applied Soil Ecology, 41, 239–248.
  • Somenahally, A. C., Hollister, E. B., Loeppert, R. H., Yan, W., & Gentry, T. J. (2011). Microbial communities in rice rhizosphere altered by intermittent and continuous flooding in fields with long-term arsenic application. Soil Biology and Biochemistry, 43, 1220–1228.
  • van Dillewijn, P., Villadas, P. J., & Toro, N. (2002). Effect of a Sinorhizobium meliloti strain with a modified putA gene on the rhizosphere microbial community of alfalfa. Applied and Environmental Microbiology, 68, 4201–4208.
  • Vanoverbeek, L. S., Vanveen, J. A., & Vanelsas, J. D. (1997). Induced reporter gene activity, enhanced stress resistance, and competitive ability of a genetically modified Pseudomonas fluorescens strain released into a field plot planted with wheat. Applied and Environmental Microbiology, 63, 1965–1973.
  • Vessey, J. K., & Chemining’wa, G. N. (2006). The genetic diversity of Rhizobium leguminosarum bv. viciae in cultivated soils of the eastern Canadian prairie. Soil Biology & Biochemistry, 38, 153–163.
  • Weinert, N., Meincke, R., Gottwald, C., Heuer, H., Schloter, M., Berg, G., & Smalla, K. (2010). Bacterial diversity on the surface of potato tubers in soil and the influence of the plant genotype. Fems Microbiology Ecology, 74, 114–123.
  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.
  • Wu, M., Zhang, H., Li, X., Zhang, Y., Su, Z., & Zhang, C. (2008). Soil fungistasis and its relations to soil microbial composition and diversity: A case study of a series of soils with different fungistasis. Journal of Environmental Sciences, 20, 871–877.
  • Yang, S. H., Zhang, Q., Guo, J. H., Charkowski, A. O., Glick, B. R., Ibekwe, A. M., … Yang, C. H. (2007). Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937. Applied and Environmental Microbiology, 73, 1079–1088.
  • Yao, J., & Allen, C. (2006). Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. Journal of Bacteriology, 188, 3697–3708.
  • Zhang, B. G., Bai, Z. H., Hoefel, D., Tang, L., Yang, Z. G., Zhuang, G. Q., … Zhang, H. X. (2008). Assessing the impact of the biological control agent Bacillus thuringiensis on the indigenous microbial community within the pepper plant phyllosphere. Fems Microbiology Letters, 284, 102–108.
  • Zhang, B. G., Bai, Z. H., Hoefel, D., Tang, L., Wang, X. Y., Li, B. J., … Zhuang, G. Q. (2009). The impacts of cypermethrin pesticide application on the non-target microbial community of the pepper plant phyllosphere. Science of the Total Environment, 407, 1915–1922.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.