3,810
Views
53
CrossRef citations to date
0
Altmetric
Articles

Impact of microbial proteases on biotechnological industries

&
Pages 119-143 | Received 15 Jul 2016, Accepted 20 Nov 2017, Published online: 05 Dec 2017

References

  • Adamson, N. J., & Reynolds, E. C. (1996). Characterization of casein phosphopeptides prepared using alcalase: Determination of enzyme specificity. Enzyme and Microbial Technology, 19, 202–207.10.1016/0141-0229(95)00232-4
  • Adrioo, J. L., & Demain, A. L. (2014). Microbial enzymes: Tools for biotechnological processes. Biomolecules, 4(1), 117–139.10.3390/biom4010117
  • Afifah, D. N., Sulchan, M., Syah, D., Yanti, Suhartono, M. T., & Kim, J. H. (2014). Purification and characterization of a fibrinolytic enzyme from Bacillus pumilus2.g isolated from Gembus, an Indonesian fermented food. Preventive Nutrition and Food Science, 19(3), 213–219.10.3746/pnf.2014.19.3.213
  • Ahmad, S., Noor, Z. M., & Ariffin, Z. Z. (2014). Isolation and identification fibrinolytic protease endophytic fungi from Hibiscus leaves in Shah Alam. International Scholarly and Scientific Research & Innovation, 8(10), 1104–1107.
  • Al-Askar, A. A., Abdulkhair, W. M., & Rashad, Y. (2014). Production, purification and optimization of protease by Fusarium solani under solid state sermentation and isolation of protease inhibitor protein from Rumex vesicarius L. Journal of Pure and Applied Microbiology, 8(1), 239–250.
  • Amore, A., & Faraco, V. (2015). Enzymes for food and beverage industries: Current situation, challenge and perspectives. In V. Ravishankar Rai (Ed.), Advances in food biotechnology (pp. 165–177). Wiley.10.1002/9781118864463
  • An, L., Ding, A. Y., Chen, J., Liu, S. A., Zhang, M., & Li, D. C. (2007). Purification and characterization of two thermostable proteases from the thermophilic fungus Chaetomium thermophilum. Journal of Microbiology and Biotechnology, 17(4), 624–631.
  • Anand, K. (2016). Fungal protease production by Aspergillus niger and Aspergillus flavus using rice bran as the substrate. Academic Journal of Agricultural Research, 4(6), 333–338.
  • Anbu, P. (2016). Enhanced production and organic solvent stability of a protease from Brevibacillus laterosporus strain PAP04. Brazilian Journal of Medical and Biological Research, 49. doi:10.1590/1414-431X20165178
  • Anju, S., Kondari, S. R., & Sarada, J. (2014). Bioprocess of silver extraction from used X-ray and MRI. Acta Biologica Indica, 3(1), 561–568.
  • Ariole, C. N., & Ilega, E. (2013). Alkaline protease produced by Pseudomonas aeruginosa isolated from the gut of Pila ovate. Journal of Glob Biosciences, 2(5), 126–131.
  • Asker, M. M. S., Mahmoud, M. G., El Shebwy, K., & Abd el Aziz, M. S. (2013). Purification and characterization of two thermostable protease fractions from Bacillus megaterium. Journal of Genetic Engineering and Biotechnology, 11(2), 103–109.10.1016/j.jgeb.2013.08.001
  • Azlina, I. N., & Norazila, Y. (2013). Thermostable alkaline serine protease from thermophilic Bacillus Species. International Research Journal of Biological Sciences, 2(2), 29–33.
  • Banerjee, G., Ray, A. K., Askarian, F., & Ringo, E. (2013). Characterization and identification of enzyme-producing autochthonous bacteria from the gastrointestinal tract of two Indian airbreathing fish. Beneficial Microbes, 4, 277–284.10.3920/BM2012.0051
  • Banerjee, G., Mukherjee, S., Bhattacharya, S., & Ray, A. K. (2016). Purification and characterization of extracellular protease and amylase produced by the bacterial strain, Corynebacterium alkanolyticum ATH3 isolated from fish gut. Arabian Journal for Science and Engineering, 41, 9–16.10.1007/s13369-015-1809-4
  • Beg, Q. K., & Gupta, R. (2003). Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme and Microbial Technology, 32(2), 294–304.10.1016/S0141-0229(02)00293-4
  • Benito, M. J., Rodríguez, M., Núñez, F., Asensio, M. A., Bermúdez, M. E., & Córdoba, J. J. (2002). Purification and characterization of an extracellular protease from Penicillium chrysogenum Pg222 active against peat Proteins. Applied and Environmental Microbiology, 68(7), 3532–3536.10.1128/AEM.68.7.3532-3536.2002
  • Bhunia, B., Basak, B., & Dey, A. (2012). A review on production of serine alkaline protease by Bacillus spp. Journal of Biochemical Technology, 3(4), 448–457.
  • Bialkowska, A., Gromek, E., Florczak, T., Krysiak, J., Szulczewska, K., & Turkiewicz, M. (2016). Extremophilic proteases: Developments of their special function, potential resources and biotechnological applications. In P. H. Rampelotto (Ed.), Grand challenges in biology and biotechnology (pp. 399–444). Springer International.
  • Böttcher, D., & Bornscheuer, U. T. (2010). Protein engineering of microbial enzymes. Current Opinion in Microbiology, 13, 274–282.10.1016/j.mib.2010.01.010
  • Boyer, E. W., & Byng, G. S. (1996). Bacillus proteolyticus species which produce an alkaline protease. U.S. Patent No. 551891.
  • Brouta, F., Descamps, F., Fett, T., Losson, B., Gerday, C. H., & Mignon, B. (2001). Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Medical Mycology, 39, 269–275.10.1080/mmy.39.3.269.275
  • Chakrabarti, S. K., Matsumura, N., & Ranu, R. S. (2000). Purification and characterization of an extracellular alkaline serine protease from Aspergillus terreus (IJIRA 6.2). Current Microbiology, 40(4), 239–244.10.1007/s002849910048
  • Chandrasekaran, M., & Sathiyabama, M. (2014). Production, partial purification and characterization of protease from a phytopathogenic fungi Alternaria solani (Ell. and Mart.) Sorauer. Journal of Basic Microbiology, 54, 763–774.10.1002/jobm.v54.8
  • Charles, P., Devanathan, V., Anbu, P., Ponnuswamy, M. N., Kalaichelvan, P. T., & Hur, B. K. (2008). Purification, characterization and crystallization of an extracellular alkaline protease from Aspergillus nidulans HA-10. Journal of Basic Microbiology, 48(5), 347–352.10.1002/jobm.v48:5
  • Chen, W. M., Huang, H. W., Chang, J. S., Han, Y. L., Guo, T. R., & Sheu, S. Y. (2013). Tepidimonas fonticaldi sp. nov., a slightly thermophilic betaproteobacterium isolated from a hot spring. International Journal of Systematic and Evolutionary Microbiology, 63, 1810–1816.10.1099/ijs.0.043729-0
  • Choudhary, V., & Jain, P. C. (2012). Isolation and identification of alkaline protease producing fungi from soils of different habitats of Sagar and Jabalpur District (M.P). Journal of Academia and Industrial Research, 1(3), 106–113.
  • Chu, I. M., Lee, C., & Shu-Tsu, L. (1992). Production and degradation of alkaline protease in batch cultures of Bacillus subtilis ATCC 14416. Enzyme and Microbial Technology, 14(9), 755–761.10.1016/0141-0229(92)90116-6
  • Claverie-MartÌn, F., & Vega-Hernàndez, M. C. (2007). Aspartic proteases used in cheese making. In J. Polaina & A. P. MacCabe (Eds.), Industrial Enzymes (pp. 207–219). Netherlands: Springer.
  • Conlon, M. A., & Bird, A. R. (2015). The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 7, 17–44.
  • Cummings, C., Murata, H., Koepsel, R., & Russell, A. J. (2014). Dramatically Increased pH and temperature stability of chymotrypsin using dual block polymer-based protein engineering. Biomacromolecules, 15(3), 763–771.10.1021/bm401575 k
  • Dalev, P. G. (1994). Utilization of waste feathers from poultry slaughter for production of a protein concentrate. Bioresources Technology, 48, 265–267.10.1016/0960-8524(94)90156-2
  • De Castro, R. J. S., Ohara, A., Nishide, T. G., Albernaz, J. R. M., Soares, M. H., & Sato, H. H. (2015). A new approach for proteases production by Aspergillus niger based on the kinetic and thermodynamic parameters of the enzymes obtained. Biocatalysis and Agricultural Biotechnology, 4(2), 199–207.10.1016/j.bcab.2014.12.001
  • De Castro, R. J. S., & Sato, H. H. (2014). Protease from Aspergillus oryzae: Biochemical characterization and application as a potential biocatalyst for production of protein hydrolysates with antioxidant activities. Journal of Food Processing. ID 372352. doi:10.1155/2014/372352
  • Deivasigamani, B., & Alagappan, K. M. (2008). Industrial application of keratinase and soluble proteins from feather keratins. Journal of Environmental Biology, 29(6), 933–936.
  • Dian Siti, S., Ihsanawati, & Hertadi, R. (2015). Isolation and characterization of organic-solvent stable protease isolated by Pseudomonas stutzeri BK AB-12. Procedia Chemistry, 16(2015), 341–348.10.1016/j.proche.2015.12.062
  • Dixit, G., & Verma, S. C. (1993). Production of alkaline proteases by Penicillium griseofulvin. Indian Journal of Microbiology, 33, 257–260.
  • Eijsink, V. G. H., vander Zee, J. K., vanden Burg, B., Vriend, G., & Venema, G. (1991). Improving the thermostability of the neutral protease of Bacillus stearothermophilus by replacing a burried aspargine by leucine. FEBS Letters, 282, 13–16.10.1016/0014-5793(91)80434-5
  • Eijsink, V. G. H., Vriend, G., vanden Burg, B., vander Zee, J. R., & Venema, G. (1992). Increasing the thermostability of a neutral protease by replacing positively charged amino acids in the Nterminal turn of α-helices. Protein Engineering, 5, 165–170.10.1093/protein/5.2.165
  • Ellaiah, P., Srinivasulu, B., & Adinarayana, K. (2002). A review on microbial alkaline proteases. Journal of Scientific & Industrial Research, 61, 690–704.
  • Escobar, J., & Barnett, S. M. (1993). Effect of agitation speed on the synthesis of Mucor miehei acid protease. Enzyme and Microbial Technology, 15(12), 1009–1013.10.1016/0141-0229(93)90047-6
  • Estell, D. A., Graycar, T. P., & Wells, J. A. (1985). Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. Journal of Biological Chemistry, 260(1985), 6518–6521.
  • Feijoo-Siota, L., Blasco, L., Rodríguez-Rama, J. L., Barros-Velázquez, J., Miguel, T. d., Sánchez-Pérez, A., & Villa, T. G. (2014). Recent patents on microbial proteases for the dairy industry. Recent Advances in DNA and Gene Sequences, 8(1), 44–55.
  • Fleming, A. B., Tangney, M., Jorgensen, P. L., Diderichsen, B., & Priest, F. G. (1995). Extracellular enzyme synthesis in a sporulation-deficient strain of Bacillus licheniformis. Applied and Environmental Microbiology, 61(1995), 3775–3780.
  • Fuziwara, N., & Yamamoto, K. (1987). Decomposition of gelatin layers on X-ray films by the alkaline protease from Bacillus sp. Hakkokogaku, 65, 531–534.
  • Gajju, H., Bhalla, T. C., & Agarwal, H. O. (1996). Proc 37th Annu Conf Assoc of Microbial India Chennai.
  • Gandhi, A., & Shah, N. P. (2014). Cell growth and proteolytic activity of Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, and Streptococcus thermophilus in milk as affected by supplementation with peptide fractions. International Journal of Food Sciences and Nutrition, 65(8), 937–941.10.3109/09637486.2014.945154
  • Gaur, S., Agrahari, S., & Wadhwa, N. (2010). Purification of protease from Pseudomonas thermaerum GW1 isolated from poultry waste site. Open Microbiology, Journal, 4(1), 67–74.10.2174/1874285801004010067
  • Geng, C., Nie, X., Tang, Z., Zhang, Y., Lin, J., Sun, M., & Peng, D. (2016). A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Scientific Reports, 6, 25012.10.1038/srep25012
  • George, S., Sivasankar, B., Jayaraman, K., & Vijayalakshmi, M. A. (1997). Production and separation of methionine rich fraction from chick pea protein hydrolysate generated by proteases of Bacillus amyloliquefaciens. Process Biochemistry, 32(5), 401–404.10.1016/S0032-9592(96)00082-9
  • Giraud, E., Gosselin, L., Marin, B., Parada, J. L., & Raimbault, M. (1993). Purification and characterization of an extracellular amylase from Lactobacillus plantarum strain A6. Journal of Applied Bacteriology, 75(3), 276–282.10.1111/jam.1993.75.issue-3
  • Gopinath, S. C. B., Anbu, P., Lakshmipriya, T., Tang, T. H., Chen, Y., Hashim, U., … Md. Arshad, M. K. (2015). Biotechnological aspects and perspective of microbial keratinase production. BioMed Research International, 2015(2015), 140726.
  • Graham, L. D., Haggett, K. D., Jennings, P. A., Le Brocque, D. S., Whittaker, R. G., & Schober, P. A. (1993). Random mutagenesis of the substrate binding site of a serine protease can generate enzymes with increased activities and altered primary specificities. Biochemistry, 32, 6250–6258.10.1021/bi00075a019
  • Griffiths, M. W., & Tellez, A. M. (2013). Lactobacillus helveticus: The proteolytic system. Frontiers in Microbiology, 4, 30.
  • Gupta, R., Beeg, Q. K., Khan, S., & Chauhan, B. (2002). An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Applied Microbiology and Biotechnology, 60(4), 381–395.
  • Gupta, R., Gigras, P., Mahapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α-amylases: A biotechnological perspective. Process Biochemistry, 38(11), 1599–1616.10.1016/S0032-9592(03)00053-0
  • Gurung, N., Ray, S., Bose, S., & Rai, V. (2013). A broader view: Microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Research International. Article ID 329121. doi:10.1155/2013/329121
  • Hasan, F., Ali Shah, A., Javed, S., & Hameed, A. (2010). Enzymes used in detergents: Lipases. African Journal of Biotechnology, 9(31), 4836–4844.
  • Hershey, D. M., Ren, X., Melnyk, R. A., Browne, P. J., Ozyamak, E., Jones, S. R., … Komeili, A. (2016). MamO is a repurposed serine protease that promotes magnetite biomineralization through direct transition metal binding in magnetotactic bacteria. PLOS Biology, 14(3), e1002402. doi:10.1371/journal.pbio.1002402
  • Husain, Q. (2010). Beta galactosidases and their potential applications: A review. Critical Reviews in Biotechnology, 30(6), 41–62.10.3109/07388550903330497
  • Hwang, K. J., Choi, K. H., Kim, M. J., Park, C. S., & Cha, J. (2007). Purification and characterization of a new fibrinolytic enzyme of Bacillus licheniformis KJ-31, isolated from Korean traditional Jeot-gal. Journal of Microbiology and Biotechnology, 17, 1469–1476.
  • Ibrahim, A. S. S., Al-Salamah, A. A., El-Toni, A. M., Almaary, K. S., El-Tayeb, M. A., Elbadawi, Y. B., & Antranikian, G. (2016). Enhancement of alkaline protease activity and stability via covalent immobilization onto hollow core-mesoporous shell silica nanospheres. International Journal of Molecular Sciences, 17(2), 184.10.3390/ijms17020184
  • Jellouli, K., Bougatef, A., Manni, L., Agrebi, R., Siala, R., Younes, I., & Nasri, M. (2009). Molecular and biochemical characterization of an extracellular serine-protease from Vibrio etschnikovii. Microbial Biotechnology, 36, 939–948.10.1007/s10295-009-0572-5
  • Jemli, S., Ayadi-Zouari, D., Hlima, H. B., & Bejar, S. (2016). Biocatalysts: Application and engineering for industrial purposes. Critical Reviews in Biotechnology, 36(2), 246–258.10.3109/07388551.2014.950550
  • Jisha, V. N., Smitha, R. B., Pradeep, S., Sreedevi, S., Unni, K. N., Sajith, S., … Benjamin, S. (2013). Versatility of microbial proteases. Advances in Enzyme Research, 1(3), 39–51.10.4236/aer.2013.13005
  • Joo, H. S., Kumar, C. G., Park, G. C., Paik, S. R., & Chang, C. S. (2003). Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: Production and some properties. Journal of Applied Microbiology, 95(2), 267–272.10.1046/j.1365-2672.2003.01982.x
  • Jridi, M., Lassoued, I., Nasri, R., Ayadi, M. A., Nasri, M., & NSouissi, N. (2014). Characterization and potential use of cuttlefish skin gelatin hydrolysates prepared by different microbial proteases. BioMed Research International. Article ID 461728. doi:10.1155/2014/461728
  • Kalisz, H. M. (2006). Microbial proteinases. Advances in Biochemical Engineering Biotechnology, 36, 1–65.
  • Kalpana Devi, M., Rasheedha Banu, A., Gnanaprabhal, G. R., Pradeep, B. V., & Palaniswamy, M. (2008). Purification, characterization of alkaline protease enzyme from native isolates Aspergillus niger and its compatibility with commercial detergents. Indian Journal of Science and Technology, 1(7), 1–6.
  • Khalil, M. S. E. H., Allam, A. F. G., & Barakat, A. S. T. (2012). Nematicidal activity of some biopesticide agents and microorganism against root-knot nematode on tomato plant under greenhouse condition. Journal of Plant Protection Research, 52, 47–52.
  • Khan, F. (2013). New microbial proteases in leather and detergent industries. Innovative Research in Chemistry, 1, 1–6.
  • Khan, M. A., Ahmad, N., Zafar, A. U., Nasir, I. A., & Qadir, M. A. (2011). Isolation and screening of alkaline protease producing bacteria and physio-chemical characterization of the enzyme. African Journal of Biotechnology, 10(33), 6203–6212.
  • Kim, T., & Lei, X. G. (2005). Expression and characterization of a thermostable serine protease (TfpA) from Thermomonospora fusca YX in Pichia pastoris. Applied Microbiology and Biotechnology, 68(3), 355–359.10.1007/s00253-005-1911-8
  • Kishore, V., Nishita, K. P., & Manonmani, H. K. (2015). Cloning, expression and characterization of l-asparaginase from Pseudomonas fluorescens for large scale production in E. coli BL21. 3 Biotech, 5(6), 975–981.
  • Kohlmann, K. L., Nielsen, S. S., Steenson, L. R., & Ladisch, M. R. (1991). Production of proteases by psychrotrophic microorganisms. Journal of Dairy Science, 74(10), 3275–3283.10.3168/jds.S0022-0302(91)78513-5
  • Kumaran, E., Mahalakshmipriya, A., & Rajan, S. (2013). Effect of fish waste based protease in silver recovery from X-ray films. International Journal of Current Microbiology and applied Sciences, 2, 49–56.
  • Lakshmi, G., & Prasad, N. N. (2015). Purification and characterization of alkaline protease from a Mutant Bacillus licheniformis Bl8. Advances in Biological Research, 9(1), 15–23.
  • Larcher, G., Cimon, B., Symoens, F., Tronchin, G., Chabasse, D., & Bouchara, A. (1996). A 33 kDa serine proteinase from Scedosporium apiospermum. Biochemical Journal, 315, 119–126.10.1042/bj3150119
  • Leng, Y. W., & Xu, Y. (2013). Improvement of acid protease production by a mixed culture of Aspergillus niger and Aspergillus oryzae using solid-state fermentation technique. African Journal of Biotechnology, 10, 6824–6829.
  • Li, X., & Yu, H. Y. (2012). Purification and characterization of novel organic-solvent-tolerant β-amylase and serine protease from a newly isolated Salimicrobium halophilum strain LY20. FEMS Microbiology Letters, 329(2), 204–211.10.1111/fml.2012.329.issue-2
  • Li, S., Yang, X., Yang, S., Zhu, M., & Wang, X. (2012). Technology prospecting on enzymes: Application, marketing and engineering. Computational and Structural Biotechnology Journal, 2, e201209017. doi:10.5936/csbj.201209017
  • Li, Q., Yi, L., Marek, P., & Iverson, B. L. (2013). Commercial proteases: Present and future. FEBS Letters, 587, 1155–1163.10.1016/j.febslet.2012.12.019
  • Lu, J., Wu, X., Jiang, Y., Cai, X., Huang, L., Yang, Y., … Li, A. (2014). An extremophile Microbacterium strain and its protease production under alkaline conditions. Journal of Basic Microbiology, 54, 378–385.10.1002/jobm.v54.5
  • Manachini, P. L., Fortina, N. G., & Parini, C. (1998). Thermostable alkaline protease produced by Bacillus thermoruber – a new species of Bacillus. Applied Microbiology and Biotechnology, 28(4–5), 409–413.
  • Mane, P., & Tale, V. (2015). Overview of microbial therapeutic enzymes. International Journal of Current Microbiology and applied Sciences, 4, 17–26.
  • Martinez-Rosales, C., & Castro-Sowinski, S. (2011). Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Research, 30, 7123.10.3402/polar.v30i0.7123
  • Marzan, L. W., Manchur, M. A., Hossain, M. T., & Anwar, M. N. (2001). Production of protease and amylase by Fusarium poae. Bangladesh Journal of Microbiology, 18(2), 127–134.
  • Mathew, C. D., & Gunathilika, R. M. S. (2015). Production, purification and characterization of a thermostable alkaline serine protease from Bacillus licheniformis NMS-1. International Journal of Biotechnology and Molecular Biology Research, 6(3), 19–27.
  • Miyaji, T., Otta, Y., Shibata, T., Mitsui, K., Nakagawa, T., Watanabe, T., … Tomizuka, N. (2005). Purification and characterization of extracellular alkaline serine protease from Stenotrophomonas maltophilia strain S-1. Letters in Applied Microbiology, 41(3), 253–257.10.1111/lam.2005.41.issue-3
  • Miyoshi, S. I. (2013). Extracellular proteolytic enzymes produced by human pathogenic vibrio species. Frontiers in Microbiology, 4, 339.
  • Mohamed, M. A. (2007). Purification and characterization of an alkaline protease produced by the bacterium Xenorhabdus nematophila BA2, a symbiont of entomopathogenic nematode Steinernema carpocapsae. Research Journal of Agriculture and Biological Science, 3(5), 510–521.
  • Mothe, T., & Sultanpuram, V. R. (2016). Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacilluscaseinilyticus. 3. Biotech, 6(1), 53.
  • Motyan, J. A., Toth, F., & Tozser, J. (2013). Research applications of proteolytic enzymes in molecular biology. Biomolecules, 3, 923–942.10.3390/biom3040923
  • Muthulakshmi, C., Gomathi, D., Kumar, D. G., Ravikumar, G., Kalaiselvi, M., & Uma, C. (2011). Production, purification and characterization of protease by Aspergillus flavus under solid state fermentation. Jordan Journal of Biological Science, 4(3), 137–148.
  • Naji, K. M., Abdullah, Q. Y. M., AlZaqri, A. Q. M., & Alghalibi, S. M. (2014). Evaluating the biodeterioration enzymatic activities of fungal contamination isolated from some ancient yemeni mummies preserved in the National Museum. Biochemistry Research International. ID 481508. doi:10.1155/2014/481508
  • Nascimento, T. P., Sales, A. E., Porto, C. S., Brandao, R. M. P., Takaki, G. M. C., Teixeira, J. A. C., … Porto, A. L. F. (2015). Production and characterization of new fibrinolytic protease from Mucor subtillissimus UCP 1262 in solid-state fermentation. Advances in Enzyme Research, 3, 81–91.10.4236/aer.2015.33009
  • Negi, S., Gupta, S., & Banerjee, R. (2011). Extraction and purification of glucoamylase and protease produced by Aspergillus awamori in a single-stage fermentation. Food Technology and Biotechnology, 49(3), 310–315.
  • Neto, Y. A. A. H., Motta, C. M. D. S., & Cabral, H. (2013). Optimization of metalloprotease production by Eupenicillium javanicum in both solid state and submerged bioprocesses. African Journal of Biochemistry Research, 7(8), 146–157.
  • Ng, W. J. (2001). Fermentation of starch for enhanced alkaline protease production by constructing an alkalophilic Bacillus pumilus strain. Applied Microbiology and Biotechnology, 57(2001), 153–160.
  • Nissen, J. A. (1986). Enzymic hydrolysis of food proteins. New York: Elservier Applied Science.
  • Niyonzima, F. N., & More, S. (2015). Detergent-compatible proteases: Microbial production, properties, and stain removal analysis. Preparative Biochemistry and Biotechnology, 45, 233–258.10.1080/10826068.2014.907183
  • Novelli, P. K., Barros, M. M., & Fleuri, L. F. (2016). Novel inexpensive fungi proteases: Production by solid state fermentation and characterization. Food Chemistry, 198, 119–124.10.1016/j.foodchem.2015.11.089
  • Obeid, A. E. F. E., Alawad, A. M., & Ibrahim, H. M. (2015). Isolation and characterization of Bacillus Subtillus with potential production of nattokinase. International Journal of Advance Research, 3(3), 94–101.
  • Ogino, H., Tsuchiyama, S., Yasuda, M., & Doukyu, N. (2010). Enhancement of the aspartame precursor synthetic activity of an organic solvent-stable protease. Protein Engineering Design and Selection, 23(3), 147–152.10.1093/protein/gzp086
  • Oseni, O. A. (2011). production of microbial protease from selected soil fungal isolates. Nigerian Journal of Biotechnology, 23, 28–34.
  • Oyeleke, S. B., Egwim, E. C., & Auta, S. H. (2010). Screening of Aspergillus flavus and Aspergillus fumigatus strains for extracellular protease enzyme production. Journal of Microbiology and Antimicrobials, 2(7), 83–87.
  • Padmapriya, M., & Williams, B. C. (2012). Purification and characterization of neutral protease enzyme from Bacillus subtilis. Journal of Microbiology and Biotechnology Research, 2(4), 612–618.
  • Padmapriya, B., Thamaraichelvan, R., Nandita, R., & Raj, F. (2012). Production and purification of alkaline serine protease from marine Bacillus species and its application in detergent industry. European Journal of Applied Sciences, 4(1), 21–26.
  • Palanivel, P., Ashokkumar, L., & Banagurunathan, R. (2013). Production, purification and fibrinolytic characterization of alkaline protease from extremophilic soil fungi. International Journal of Pharm Bio Sciences, 4(2), 101–110.
  • Pant, G., Prakash, A., Pavani, J. V. P., Bera, S., Deviram, G. V. N. S., Kumar, A., … Prasuna, R. G. (2015). Production, optimization and partial purification of protease from Bacillus subtilis. Journal of Taibah University for Science, 9(1), 50–55.10.1016/j.jtusci.2014.04.010
  • Patil, D. R., Rethwisch, D. G., & Dordick, J. S. (1991). Enzymatic synthesis of a sucrose-containing linear polyester in nearly anhydrous organic media. Biotechnology and Bioengineering, 37(7), 639–646.10.1002/(ISSN)1097-0290
  • Patyar, S., Joshi, R., Prasad Byrav, D. S., Prakash, A., Medhi, B., & Das, B. K. (2010). Bacteria in cancer therapy: A novel experimental strategy. Journal of Biomedical Science, 17, 21.10.1186/1423-0127-17-21
  • Paul, S. S., Kamra, D. N., & Sastry, V. R. (2010). Fermentative characteristics and fibrolytic activities of anaerobic gut fungi isolated from wild and domestic ruminants. Archives of Animal Nutrition, 64(4), 279–92.10.1080/17450391003625037
  • Paul, T., Jana, A., Mandal, A. K., Mandal, A., Mohpatra, P. K., & Mondal, K. C. (2016). Bacterial keratinolytic protease, imminent starter for NextGen leather and detergent industries. Sustainable Chemistry and Pharmacy, 3, 8–22.10.1016/j.scp.2016.01.001
  • Peng, Y., Huang, Q., Zhang, R. H., & Zhang, Y. Z. (2003). Purification and characterization of a fibrinolytic enzyme produced by Bacillus emyloliquefaciens DC-4 screened from Douchi, a traditional Chinese soybean food. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 134, 45–52.10.1016/S1096-4959(02)00183-5
  • Pervaiz, S., Hirpara, J. L., & Clement, M. V. (1998). Caspase proteases mediate apoptosis induced by anticancer agent preactivated MC540 in human tumor cell lines. Cancer Letters, 128(1), 11–22.10.1016/S0304-3835(98)00021-4
  • Petra, K., & Monika, C. (2016). Spontaneous regression of tumour and the role of microbial infection – possibilities for cancer treatment. Anti Cancer Drugs, 27, 269–277.
  • Pogson, M., Georgiou, G., & Iverson, B. L. (2009). Engineering next generation proteases. Current Opinion in Biotechnology, 20, 390–397.
  • Qudar, S. A. U., Shireen, E., Iqbal, S., & Tuzun, C. Y. (2009). Optimization of protease production from newly isolated strain of Bacillus sp. PCSIR EA-3. Indian Journal of Biotechnology, 8, 286–290.
  • Rai, S. K., Roy, J. K., & Mukherjee, A. K. (2010). Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Applied Microbiology and Biotechnology, 85(5), 1437–1450.10.1007/s00253-009-2145-y
  • Rajagopalan, G., & Krishnan, C. (2008). α-Amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresources Technology, 99(8), 3044–3050.10.1016/j.biortech.2007.06.001
  • Rakashanda, S., & Amin, S. (2013). Proteases as targets in anticancer therapy using their inhibitors. Journal of Life Sciences, 5(2), 133–138.10.1080/09751270.2013.11885220
  • Rathod, M. G., & Pathak, A. P. (2014). Wealth from waste: Optimized alkaline protease production from agro-industrial residues by Bacillus alcalophilus LW8 and its biotechnological applications. Journal of Taibah University for Science, 8(4), 307–314.10.1016/j.jtusci.2014.04.002
  • Raut, S., Sen, S. K., Kabir, N. A., Satpathy, S., & Raut, S. (2012). Isolation and characterization of protease producing bacteria from upper respiratory tract of wild chicken. Bioinformation, 8(7), 326–330.10.6026/bioinformation
  • Ray, A. K., Ghosh, K., & Ringø, E. (2012). Enzyme-producing bacteria isolated from fish gut: A review. Aquaculture Nutrition, 18, 465–492.10.1111/anu.2012.18.issue-5
  • Rovati, J., Delgado, O. D., De Figueroa, L. I. C., & Fariña, J. I. (2013). Novel source of fibrinolytic activity: Bionectria sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucumán, Argentina). World Journal of Microbiology and Biotechnology, 26, 55–62.
  • Roy, T., Banerjee, G., Dan, S. K., & Ray, A. K. (2013). Optimization of fermentation conditions for phytase production by two strains of Bacillus licheniformis (LF1 and LH1) isolated from the intestine of rohu, Labeo rohita (Hamilton). Proceedings of the Zoological Society, 66(1), 27–35.10.1007/s12595-012-0057-9
  • Rui, H., Qin, L., Qiyao, W., Ma, Y., Liu, H., Shi, C., & Zhang, Y. (2009). Role of alkaline serine protease, Asp, in Vibrio alginolyticus virulence and regulation of its expression by LuxO-LuxR regulatory system. Journal of Microbiology and Biotechnology, 19(5), 431–438.10.4014/jmb.0807.404
  • Salevesen, G., & Nagase, H. (1983). Inhibition of proteolytic enzymens. In J. R. Beynon & J. S. Bond (Eds.), Poteolytic Enzymes; A Practical Approach (p. 83). Oxford: IRL Press.
  • Sareen, R., & Mishra, P. (2008). Purification and characterization of organic solvent stable protease from Bacillus licheniformis RSP-09-37. Applied Microbiology and Biotechnology, 79(3), 399–405.10.1007/s00253-008-1429-y
  • Sawant, R., & Nagendran, S. (2014). Protease: An enzyme with multiple industrial applications. World Journal of Pharmacy and Pharmaceutical Sciences, 3(6), 568–579.
  • Saxena, R., & Singh, R. (2011). Characterization of a metallo-protease produced in solid state fermentation by a newly isolated Bacillus strain. Acta Biologica Szegediensis, 55(1), 13–18.
  • Senthilraj, P., & Saravanakumar, K. (2011). Purification and characterization of protease from mangroves derived strain of Bacillus cereus. International Journal of Multidisciplinary Research, Journal, 1(1), 13–18.
  • Sethi, S., & Gupta, S. (2015). Optimization of protease production from fungi isolated from soil. International Journal of Applied Biology and Pharmaceutical Technology, 3, 149–154.
  • Shabbiri, K., Adnan, A., Jamil, S., Ahmad, W., Noor, B., & Rafique, H. M. (2012). Medium optimization of protease production by Brevibacterium linens DSM 20158, using statistical approach. Brazilian Journal of Microbiology, 43(3), 1051–1061.10.1590/S1517-83822012000300031
  • Shankar, S., More, S. V., & Seeta Laxman, R. (2010). Recovery of silver from waste x-ray film by alkaline protease from Conidibolus coronatus. Kathmandu University Journal of Science Engineering and Technology, 6(I), 60–69.
  • Sharma, N., & De, K. (2011). Production, purification and crystallization of an alkaline protease from Aspergillus tamari [EF661565.1]. Agriculture and Biology Journal of North America, 2(7), 1135–1142.10.5251/abjna.2011.2.7.1135.1142
  • Sharma, A. K., Sharma, V., Saxena, J., Yadav, B., Alam, A., & Prakash, A. (2015). Optimization of protease production from Bacillus isolated from soil. Applied Research Journal, 7, 388–394.
  • Shi, J., Coyne, V. E., & Weiner, R. M. (1997). Identification of an alkaline metalloprotease produced by the hydrothermal vent bacterium Hyphomonas jannaschiana VP3. Microbiology, 91, 15–26.
  • Singh, J., Vohra, R. M., & Sahoo, D. K. (1999). Alkaline protease from a new obligate alkalophilic isolate of Bacillus sphaericus. Biotechnology Letters, 21(10), 921–924.10.1023/A:1005502824637
  • Souza, P. M., Bittencourt, M. L. A., Caprara, C. C., de Freitas, M., de Almeida, R. P. C., Silveira, D., … Magalhães, P. O. (2015). A biotechnology perspective of fungal proteases. Brazilian Journal of Microbiology, 46, 337–346.10.1590/S1517-838246220140359
  • Srilakshmi, J., Madhavi, J., Lavanya, S., & Ammani, K. (2014). Commercial potential of fungal protease: Past, present and future prospects. Journal of Pharmaceutical Chemical and Biological Sciences, 2(4), 218–234.
  • Strausberg, S., Ruan, B., Fisher, K., Alexander, P., & Bryan, P. (2005). Directed coevolution of stability and catalytic activity in calcium-free subtilisin. Biochemistry, 44, 3272–3279.10.1021/bi047806 m
  • Subba Rao, C., Sathish, T., Ravichandra, P., & Prakasham, R. S. (2009). Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochemistty, 44, 262–268.10.1016/j.procbio.2008.10.022
  • Suntornsuk, W., & Suntornsuk, L. (2003). Feather degradation by Bacillus sp FK 46 in submerged cultivation. Bioresource Technology, 86, 239–243.10.1016/S0960-8524(02)00177-3
  • Surendran, A., Vennison, S. J., Ravikumar, S., & Syed Ali, M. (2011). Optimization of alkaline protease production Bacillus sphaericus SBS4 by soil bacterium. Journal of Pharmacy Research, 4(5), 1517–1519.
  • Sutar, I. I., Srinivasan, M. C., & Vartak, H. G. (1991). A low molecular weight alkaline proteinase from Conidiobolus coronatus. Biotechnology Letters, 13(2), 119–124.10.1007/BF01030462
  • Takagi, H., Hirai, K., Maeda, Y., Matsuzawa, H., & Nakamori, S. (2000). Engineering subtilisin E for enhanced stability and activity in polar organic solvents. Journal of Biochemistry, 127, 617–625.10.1093/oxfordjournals.jbchem.a022649
  • Taprig, T., Akaracharanya, A., Sitdhipol, J., Visessanguan, W., & Tanasupawat, S. (2013). Screening and characterization of protease-producing Virgibacillus, Halobacillus and Oceanobacillus strains from Thai fermented fish. Journal of Applied Pharmaceutical Science, 3(02), 025–030.
  • Tavea, F., Fossi, B. T., Fabrice, N. T., Ngoune, L. T., & Ndjouenkeu, R. (2016). Production and partial characterization of an extracellular thermophile alkaline protease from a selected strain of Bacillus sp. isolated from abattoir soil in the North Region of Cameroon. Journal of Bioprocessimg & Biotechniques, 6, 279.
  • Tekin, N., Cihan, A. C., Takac, Z. S., Tuzun, C. Y., Tunc, K., & Cokmus, C. (2012). Alkaline protease production of Bacillus cohnii APT5. Turkish Journal of Biology, 36(2012), 430–440.
  • Thomas, P. G., Russell, A. J., & Fersht, A. R. (1985). Tailoring the pH dependence of enzyme catalysis using protein engineering. Nature, 28, 375–376.10.1038/318375a0
  • Tripathi, P., Kukreja, N., Singh, B. P., & Arora, N. (2009). Serine protease activity of Cur l 1 from Curvularia lunata augments Th2 response in mice. Journal of Clinical Immunology, 29(3), 292–302.10.1007/s10875-008-9261-9
  • Tsujibo, H., Miyamoto, K., Okamoto, T., Orikoshi, H., & Inamori, Y. (2000). A serine protease-encoding gene (aprII) of Alteromonas sp. strain O-7 Is regulated by the iron uptake regulator (Fur) protein. Applied and Environmental Microbiology, 66(9), 3778–3783.10.1128/AEM.66.9.3778-3783.2000
  • Umar Dahot, M. (1994). Purification and some properties of alkaline protease from Penicillium expansum. Journal of Islamic Academy of Science, 7(2), 100–105.
  • van der Maarel, M. J., van der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94(2), 137–155.10.1016/S0168-1656(01)00407-2
  • Vanitha, N., Rajan, S., & Murugesan, A. G. (2014). Optimization and production of alkaline protease enzyme from Bacillus subtilis 168 isolated from food industry waste. International Journal of Current Microbiology and Applied Sciences, 3(6), 36–44.
  • Verma, A., Singh, H., Anwar, M. S., Ansari, M. W., & Agrawal, S. (2014). Production of alkaline protease from a haloalkaliphilic soil thermoactinomycete and its application in feather fibril disintegration. African Journal of Microbiology Research, 8(27), 2565–2573.
  • Verma, A., Singh, H., Anwar, S., Chattopadhyay, A., Tiwari, K. K., Kaur, S., & Dhilon, G. S. (2016). Microbial keratinases: Industrial enzymes with waste management potential. Critical Review in Biotechnology, 13, 1–16.
  • Verma, A., Singh, H., Anwar, S., Chattopadhyay, A., Tiwari, K. K., Kaur, S., & Dhilon, G. S. (2017). Microbial keratinases: Industrial enzymes with waste management potential. Critical Reviews in Biotechnology, 37(4), 476–491.10.1080/07388551.2016.1185388
  • Vidyasagar, M., Prakash, S., Jayalakshmi, S. K., & Sreeramulu, K. (2007). Optimization of culture conditions for the production of halothermophilic protease from halophilic bacterium Chromohalobacter sp. TVSP101. World Journal of Microbiology and Biotechnology, 23(5), 655–662.10.1007/s11274-006-9279-1
  • Vidyasagar, M., Prakash, S., Mahajan, V., Shouche, Y. S., & Sreeramulu, K. (2009). Purification and characterization of an extreme halothermophilic protease from a halophilic bacterium Chromohalobacter sp. TVSP101. Brazilian Journal of Microbiology, 40(1), 12–19.10.1590/S1517-83822009000100002
  • Vojcic, L., Pitzler, C., Körfer, G., Jakob, F., Martinez, R., Maurer, K. H., & Schwaneberg, U. (2015). Advances in protease engineering for laundry detergents. New Biotechnology, 32(6), 629–634.10.1016/j.nbt.2014.12.010
  • Wang, C., Du, M., Zheng, D., Kong, F., Zu, G., & Feng, Y. (2009). Purification and characterization of nattokinase fromBacillus subtilis Natto B-12. Journal of Agricultural and Food Chemistry, 57, 9722–9729.10.1021/jf901861v
  • Wang, H., Yang, L., Ping, Y., Bai, Y., Luo, H., Huang, H., & Yao, B. (2016). Engineering of a Bacillus amyloliquefaciens strain with high neutral protease producing capacity and optimization of its fermentation conditions. PLoS ONE, 11(1), e0146373.10.1371/journal.pone.0146373
  • wishard, R., Jaiswal, M., Parveda, M., Amareshwari, P., Bhadoriya, S. S., Rathore, P., … Nair, A. S. (2014). Identification and characterization of alkaline protease producing Bacillus firmus species EMBS023 by 16S rRNA gene sequencing. Interdisciplinary Science, 6(4), 271–278.10.1007/s12539-014-0187-z
  • Xu, B. L., Dai, M., Chen, Y., Meng, D., Wang, Y., Fang, N., … Tang, B. (2015). Improving the thermostability and activity of a thermophilic subtilase by incorporating structural elements of its psychrophilic counterpart. Applied and Environmental Microbiology, 81, 6302–6313.10.1128/AEM.01478-15
  • Xu, W., Shao, R., Wang, Z., & Yan, X. (2015). Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis. Applied Biochemistry and Biotechnology, 175(6), 3184–94.10.1007/s12010-015-1495-4
  • Yadav, S., & Siddalingeshwara, K. G. (2015). Screening and biosynthesis of fibrinolytic enzyme from Aspergillus japonicum. Journal of Drug Delivery and Therapeutics, 5(6), 60–62.
  • Yang, J. K., Shih, I. L., Tzeng, Y. M., & Wang, S. L. (2000). Production and purification of protease from a Bacillus subtilisthat can deproteinize crustacean wastes. Enzyme and Microbial Technology, 26(5–6), 406–413.10.1016/S0141-0229(99)00164-7
  • Yin, L. J., Chou, Y. H., & Jiang, S. T. (2013). Purification and characterization of acidic protease from Aspergillus Oryzae BRRC 30118. Journal of Martine Science and Technology, 21(1), 105–110.
  • Yoo, A. Y., & Park, J. K. (2016). Isolation and characterization of a serine protease-producing marine bacterium Marinomonas arctica PT-1. Bioprocess and Biosystems Engineering, 39(2), 307–314.10.1007/s00449-015-1514-4
  • Zanphorlin, L. M., Cabral, H., Arantes, E., Assis, D., Juliano, M. A., Da-Silva, R., … Binilla-Rodriguez, G. O. (2011). Purification and characterization of a new alkaline serine protease from the thermophilic fungus Myceliophthora sp. Process Biochemistry, 46(11), 2137–2143.10.1016/j.procbio.2011.08.014
  • Zhang, X. Y., Han, X. U., Chen, X. L., Dang, H. Y., Xie, B. B., Qin, Q. L., … Zhang, Y. Z. (2015). Diversity of cultivable protease-producing bacteria in sediments of Jiaozhou Bay, China. Frontiers in Microbiology. doi:10.3389/fmicb.2015.01021
  • Zhang, K., Duan, X., & Wu, J. (2016). Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Scientific Reports, 6. doi:10.1038/srep27943

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.