5,121
Views
134
CrossRef citations to date
0
Altmetric
Articles

Tissue engineering; strategies, tissues, and biomaterials

, , , , , & show all
Pages 144-172 | Received 26 Mar 2017, Accepted 17 Jan 2018, Published online: 31 Jan 2018

References

  • Abdal-hay, A., Sheikh, F. A., & Lim, J. K. (2013). Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 102, 635–643.10.1016/j.colsurfb.2012.09.017
  • Ahvaz, H. H., Mobasheri, H., Bakhshandeh, B., Shakhssalim, N., Naji, M., Dodel, M., & Soleimani, M. (2013). Mechanical characteristics of electrospun aligned PCL/PLLA nanofibrous scaffolds conduct cell differentiation in human bladder tissue engineering. Journal of Nanoscience and Nanotechnology, 13(7), 4736–4743.10.1166/jnn.2013.7193
  • Ahvaz, H. H., Soleimani, M., Mobasheri, H., Bakhshandeh, B., Shakhssalim, N., Soudi, S., … Dodel, M. (2012). Effective combination of hydrostatic pressure and aligned nanofibrous scaffolds on human bladder smooth muscle cells: Implication for bladder tissue engineering. Journal of Materials Science: Materials in Medicine, 23(9), 2281–2290.10.1007/s10856-012-4688-1
  • Aibibu, D., Hild, M., Wöltje, M., & Cherif, C. (2016). Textile cell-free scaffolds for in situ tissue engineering applications. Journal of Materials Science: Materials in Medicine, 27(3), 430.10.1007/s10856-015-5656-3
  • Almeida, N., Mueller, A., Hirschi, S., & Rakesh, L. (2014). Rheological studies of polysaccharides for skin scaffolds. Journal of Biomedical Materials Research Part A, 102(5), 1510–1517.10.1002/jbm.a.34805
  • Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone tissue engineering: Recent advances and challenges. Critical Reviews™. BioMedical Engineering, 40(5), 363–408.
  • Andreas, K., Sittinger, M., & Ringe, J. (2014). Toward in situ tissue engineering: Chemokine-guided stem cell recruitment. Trends in Biotechnology, 32(9), 483–492.10.1016/j.tibtech.2014.06.008
  • Bakhshandeh, B., Soleimani, M., Ghaemi, N., & Shabani, I. (2011). Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering. Acta Pharmacologica Sinica, 32(5), 626–636.10.1038/aps.2011.8
  • Bakhshandeh, B., Soleimani, M., Paylakhi, S. H., & Ghaemi, N. (2012). A microRNA signature associated with chondrogenic lineage commitment. Journal of Genetics, 91(2), 171–182.10.1007/s12041-012-0168-0
  • Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10(6), 2341–2353.10.1016/j.actbio.2014.02.015
  • Basad, E., Ishaque, B., Bachmann, G., Stürz, H., & Steinmeyer, J. (2010). Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: A 2-year randomised study. Knee Surgery, Sports Traumatology, Arthroscopy, 18(4), 519–527.10.1007/s00167-009-1028-1
  • Beiser, I. H., & Kanat, I. O. (1989). Subchondral bone drilling: A treatment for cartilage defects. The Journal of foot surgery, 29(6), 595–601.
  • Bekkers, J., Tsuchida, A., Malda, J., Creemers, L., Castelein, R., Saris, D., & Dhert, W. (2010). Quality of scaffold fixation in a human cadaver knee model. Osteoarthritis and Cartilage, 18(2), 266–272.10.1016/j.joca.2009.09.001
  • Bellini, M. Z., Caliari-Oliveira, C., Mizukami, A., Swiech, K., Covas, D. T., Donadi, E. A., … Moraes, A. M. (2015). Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds. Journal of Biomaterials Applications, 29(8), 1155–1166.10.1177/0885328214553959
  • Bergsma, J. E., de Bruijn, W. C., Rozema, F. R., Bos, R. R., & Boering, G. (1995). Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials, 16(1), 25–31.10.1016/0142-9612(95)91092-D
  • Berisio, R., Vitagliano, L., Mazzarella, L., & Zagari, A. (2002). Recent progress on collagen triple helix structure, stability and assembly. Protein & Peptide Letters, 9(2), 107–116.10.2174/0929866023408922
  • Bernardini, G., Chellini, F., Frediani, B., Spreafico, A., & Santucci, A. (2015). Human platelet releasates combined with polyglycolic acid scaffold promote chondrocyte differentiation and phenotypic maintenance. Journal of Biosciences, 40(1), 61–69.10.1007/s12038-014-9492-2
  • Borges, J., Mueller, M. C., Padron, N. T., Tegtmeier, F., Lang, E. M., & Stark, G. B. (2003). Engineered adipose tissue supplied by functional microvessels. Tissue Engineering, 9(6), 1263–1270.10.1089/10763270360728170
  • Bose, S., & Tarafder, S. (2012). Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review. Acta Biomaterialia, 8(4), 1401–1421.10.1016/j.actbio.2011.11.017
  • Bowlin, G. L., Meyer, A., Fields, C., Cassano, A., Makhoul, R. G., Allen, C., & Rittgers, S. E. (2001). The persistence of electrostatically seeded endothelial cells lining a small diameter expanded polytetrafluoroethylene vascular graft. Journal of Biomaterials Applications, 16(2), 157–173.10.1106/NCQT-JFV9-2EQ1-EBGU
  • Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England Journal of Medicine, 331(14), 889–895.10.1056/NEJM199410063311401
  • Burg, K. J., Holder, W. D., Culberson, C. R., Beiler, R. J., Greene, K. G., Loebsack, A. B., … Halberstadt, C. R. (1999). Parameters affecting cellular adhesion to polylactide films. Journal of Biomaterials Science, Polymer Edition, 10(2), 147–161.10.1163/156856299X00108
  • Burra, P., Arcidiacono, D., Bizzaro, D., Chioato, T., Di Liddo, R., Banerjee, A., … Parnigotto, P. P. (2012). Systemic administration of a novel human umbilical cord mesenchymal stem cells population accelerates the resolution of acute liver injury. BMC Gastroenterology, 12(1), 749.10.1186/1471-230X-12-88
  • Cai, K., Yao, K., Cui, Y., Lin, S., Yang, Z., Li, X., … Luo, J. (2002). Surface modification of poly (D, L-lactic acid) with chitosan and its effects on the culture of osteoblasts in vitro. Journal of Biomedical Materials Research, 60(3), 398–404.10.1002/jbm.10008
  • Campbell, P. G., & Weiss, L. E. (2007). Tissue engineering with the aid of inkjet printers. Expert Opinion on Biological Therapy, 7(8), 1123–1127.
  • Cao, Y., Song, M., Kim, E., Shon, W., Chugal, N., Bogen, G., … Kang, M. K. (2015). Pulp-dentin regeneration: Current state and future prospects. Journal of Dental Research, 94(11), 1544–1551.10.1177/0022034515601658
  • Carrier, R. L., Papadaki, M., Rupnick, M., Schoen, F. J., Bursac, N., Langer, R., … Vunjak-Novakovic, G. (1999). Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology and Bioengineering, 64(5), 580–589.10.1002/(ISSN)1097-0290
  • Carvalho, P. H., Daibert, A. P., Monteiro, B. S., Okano, B. S., Carvalho, J. L., Cunha, D. N., & Del Carlo, R. J. (2013). Differentiation of adipose tissue-derived mesenchymal stem cells into cardiomyocytes. Arquivos Brasileiros de Cardiologia, 100(1), 82–89.10.1590/S0066-782X2012005000114
  • Catros, S., Fricain, J.-C., Guillotin, B., Pippenger, B., Bareille, R., Remy, M., … Guillemot, F. (2011). Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication, 3(2), 025001.10.1088/1758-5082/3/2/025001
  • Chandran, P. L., Paik, D. C., & Holmes, J. W. (2012). Structural mechanism for alteration of collagen gel mechanics by glutaraldehyde crosslinking. Connective Tissue Research, 53(4), 285–297.10.3109/03008207.2011.640760
  • Chang, R., Nam, J., & Sun, W. (2008). Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Engineering Part A, 14(1), 41–48.
  • Chen, F. M., Gao, L. N., Tian, B. M., Zhang, X. Y., Zhang, Y. J., Dong, G. Y., … Jin, Y. (2016). Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: A randomized clinical trial. Stem Cell Research & Therapy, 7(1), 1406.10.1186/s13287-016-0288-1
  • Chen, Y., Mak, A. F., Wang, M., Li, J. S., & Wong, M. S. (2008). In vitro behavior of osteoblast-like cells on PLLA films with a biomimetic apatite or apatite/collagen composite coating. Journal of Materials Science: Materials in Medicine, 19(6), 2261–2268.10.1007/s10856-007-3335-8
  • Chen, F. M., Wu, L. A., Zhang, M., Zhang, R., & Sun, H. H. (2011). Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials, 32(12), 3189–3209.10.1016/j.biomaterials.2010.12.032
  • Chiu, L. L., & Radisic, M. (2010). Scaffolds with covalently immobilized VEGF and Angiopoietin-1 for vascularization of engineered tissues. Biomaterials, 31(2), 226–241.10.1016/j.biomaterials.2009.09.039
  • Christodoulou, C., Longmire, T. A., Shen, S. S., Bourdon, A., Sommer, C. A., Gadue, P., … Kotton, D. N. (2011). Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes. Journal of Clinical Investigation, 121(6), 2313–2325
  • Cordeiro, C. M., & Hincke, M. T. (2011). Recent patents on eggshell: Shell and membrane applications. Recent Patents on Food, Nutrition & Agriculture, 3(1), 1–8.
  • Cucchiarini, M., Madry, H., Guilak, F., Saris, D. B., Stoddart, M. J., Koon Wong, M., & Roughley, P. (2014). A vision on the future of articular cartilage repair. European Cells and Materials, 27, 12–16.10.22203/eCM
  • Cui, N., Qian, J., Liu, T., Zhao, N., & Wang, H. (2015). Hyaluronic acid hydrogel scaffolds with a triple degradation behavior for bone tissue engineering. Carbohydrate Polymers, 126, 192–198.10.1016/j.carbpol.2015.03.013
  • Czaja, W., Krystynowicz, A., Bielecki, S., & Brown Jr, R. M. (2006). Microbial cellulose–the natural power to heal wounds. Biomaterials, 27(2), 145–151.10.1016/j.biomaterials.2005.07.035
  • D’Agostino, A., Stellavato, A., Busico, T., Papa, A., Tirino, V., Papaccio, G., … Schiraldi, C. (2015). In vitro analysis of the effects on wound healing of high- and low-molecular weight chains of hyaluronan and their hybrid H-HA/L-HA complexes. BMC Cell Biology, 16, 387.10.1186/s12860-015-0064-6
  • Dahl, S. L., Koh, J., Prabhakar, V., & Niklason, L. E. (2003). Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplantation, 12(6), 659–666.10.3727/000000003108747136
  • Dhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Polymeric scaffolds in tissue engineering application: A review. International Journal of Polymer Science, 1, 1–19.
  • Elias, P. Z., & Spector, M. (2012). Implantation of a collagen scaffold seeded with adult rat hippocampal progenitors in a rat model of penetrating brain injury. Journal of Neuroscience Methods, 209(1), 199–211.10.1016/j.jneumeth.2012.06.003
  • Elliott Donaghue, I., Tator, C. H., & Shoichet, M. S. P. (2016). Local delivery of neurotrophin-3 and anti-NogoA promotes repair after spinal cord injury. Tissue Engineering Part A, 22(9–10), 733–741.
  • Entcheva, E., Bien, H., Yin, L., Chung, C. Y., Farrell, M., & Kostov, Y. (2004). Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials, 25(26), 5753–5762.10.1016/j.biomaterials.2004.01.024
  • Erickson, I. E., Kestle, S. R., Zellars, K. H., Farrell, M. J., Kim, M., Burdick, J. A., & Mauck, R. L. (2012). High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomaterialia, 8(8), 3027–3034.10.1016/j.actbio.2012.04.033
  • Ezra, M., Bushman, J., Shreiber, D. I., Schachner, M., & Kohn, J. (2016). Porous and non-porous nerve conduits: The effects of a hydrogel luminal filler with and without a neurite-promoting moiety. Tissue Engineering Part A, 22(9–10), 818–826.
  • Farzaneh, Z., Pournasr, B., Ebrahimi, M., Aghdami, N., & Baharvand, H.. Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Reviews, 6(4), 601–610.
  • Ferraris, S., Pan, G., Cassinelli, C., Mazzucco, L., Vernè, E., & Spriano, S. (2012). Effects of sterilization and storage on the properties of ALP-grafted biomaterials for prosthetic and bone tissue engineering applications. Biomedical Materials, 7(5), 054102.10.1088/1748-6041/7/5/054102
  • Ferrero-Gutierrez, A., Menendez-Menendez, Y., Alvarez-Viejo, M., Meana, A., & Otero, J. (2013). New serum-derived albumin scaffold seeded with adipose-derived stem cells and olfactory ensheathing cells used to treat spinal cord injured rats. Histology Histopathology, 28(1), 89–100.
  • Filardo, G., Madry, H., Jelic, M., Roffi, A., Cucchiarini, M., & Kon, E. (2013). Mesenchymal stem cells for the treatment of cartilage lesions: From preclinical findings to clinical application in orthopaedics. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1717–1729.10.1007/s00167-012-2329-3
  • Foster, T. E., Puskas, B. L., Mandelbaum, B. R., Gerhardt, M. B., & Rodeo, S. A. (2009). Platelet-rich plasma from basic science to clinical applications. The American Journal of Sports Medicine, 37(11), 2259–2272.10.1177/0363546509349921
  • Frey, N., Linke, A., Suselbeck, T., Muller-Ehmsen, J., Vermeersch, P., Schoors, D., … Leor, J. (2014). Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction: a first-in-man study. Circulation: Cardiovascular Interventions, 7(6), 806–812.10.1161/CIRCINTERVENTIONS.114.001478
  • Freymann, U., Endres, M., Neumann, K., Scholman, H. J., Morawietz, L., & Kaps, C. (2012). Expanded human meniscus-derived cells in 3-D polymer-hyaluronan scaffolds for meniscus repair. Acta Biomaterialia, 8(2), 677–685.10.1016/j.actbio.2011.10.007
  • Friess, W. (1998). Collagen–biomaterial for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 45(2), 113–136.10.1016/S0939-6411(98)00017-4
  • Frohbergh, M. E., Katsman, A., Botta, G. P., Lazarovici, P., Schauer, C. L., Wegst, U. G., & Lelkes, P. I. (2012). Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials, 33(36), 9167–9178.10.1016/j.biomaterials.2012.09.009
  • Funayama, M., Takewa, Y., Oie, T., Matsui, Y., Tatsumi, E., & Nakayama, Y. (2015). In situ observation and enhancement of leaflet tissue formation in bioprosthetic “biovalve”. Journal of Artificial Organs, 18(1), 40–47.10.1007/s10047-014-0793-x
  • Garlotta, D. (2001). A literature review of poly(lactic acid). Journal of Polymers and the Environment, 9, 63–84.10.1023/A:1020200822435
  • George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan – A review. Journal of Controlled Release, 114(1), 1–14.10.1016/j.jconrel.2006.04.017
  • Gersbach, C. A., Phillips, J. E., & García, A. J. (2007). Genetic engineering for skeletal regenerative medicine. Annual Review of Biomedical Engineering, 9, 87–119.10.1146/annurev.bioeng.9.060906.151949
  • Longo, U. G., Loppini, M., Berton, A., La Verde, L., Khan, W. S., & Denaro, V. (2012). Stem cells from umbilical cord and placenta for musculoskeletal tissue engineering. Current Stem Cell Research & Therapy, 7(4), 272–281.10.2174/157488812800793054
  • Godbey, W., Hindy, B. S., Sherman, M. E., & Atala, A. (2004). A novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials, 25(14), 2799–2805.10.1016/j.biomaterials.2003.09.056
  • Gomes, M. E., Azevedo, H. S., Moreira, A. R., Ellä, V., Kellomäki, M., & Reis, R. L. (2008). Starch-poly(epsilon-caprolactone) and starch-poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: Structure, mechanical properties and degradation behaviour. Journal of Tissue Engineering and Regenerative Medicine, 2(5), 243–252.10.1002/term.v2:5
  • Gonçalves, A. I., Rodrigues, M. T., & Gomes, M. E. (2017). Tissue-engineered magnetic cell sheet patches for advanced strategies in tendon regeneration. Acta Biomaterialia, 63, 110–122.10.1016/j.actbio.2017.09.014
  • Gong, T., Heng, B. C., Lo, E. C., & Zhang, C. (2016). Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy. Stem Cells International, 2016, 9204574.
  • Grayson, W. L., Bhumiratana, S., Cannizzaro, C., Chao, P. H. G., Lennon, D. P., Caplan, A. I., & Vunjak-Novakovic, G. (2008). Effects of initial seeding density and fluid perfusion rate on formation of tissue-engineered bone. Tissue Engineering Part A, 14(11), 1809–1820.10.1089/ten.tea.2007.0255
  • Grigolo, B., Lisignoli, G., Piacentini, A., Fiorini, M., Gobbi, P., Mazzotti, G., … Facchini, A. (2002). Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAFF® 11): Molecular, immunohistochemical and ultrastructural analysis. Biomaterials, 23(4), 1187–1195.10.1016/S0142-9612(01)00236-8
  • Gu, Y., Li, Z., Huang, J., Wang, H., Gu, X., & Gu, J. (2016). Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 11(8), 2250–2260.
  • Haasper, C., Jagodzinski, M., Drescher, M., Meller, R., Wehmeier, M., Krettek, C., & Hesse, E. (2008). Cyclic strain induces FosB and initiates osteogenic differentiation of mesenchymal cells. Experimental and Toxicologic Pathology, 59(6), 355–363.10.1016/j.etp.2007.11.013
  • Hadjipanayi, E., & Schilling, A. F. (2013). Hypoxia-based strategies for angiogenic induction: The dawn of a new era for ischemia therapy and tissue regeneration. Organogenesis, 9(4), 261–272.10.4161/org.25970
  • Hafizi, M., Bakhshandeh, B., Soleimani, M., & Atashi, A. (2012). Exploring the enkephalinergic differentiation potential in adult stem cells for cell therapy and drug screening implications. In Vitro Cellular & Developmental Biology - Animal, 48(9), 562–569.10.1007/s11626-012-9546-4
  • Haraguchi, Y., Shimizu, T., Matsuura, K., Sekine, H., Tanaka, N., Tadakuma, K., & Okano, T. (2014). Cell sheet technology for cardiac tissue engineering. Cardiac Tissue Engineering: Methods in Molecular Biology, 1181, 139–155.
  • Hasan, M. M., Alam, A. M., & Nayem, K. A. (2014). Application of electrospinning techniques for the production of tissue engineering scaffolds: A Review. European Scientific Journal, 10(15), 265–278.
  • Havasi, P., Nabioni, M., Soleimani, M., Bakhshandeh, B., & Parivar, K. (2013). Mesenchymal stem cells as an appropriate feeder layer for prolonged in vitro culture of human induced pluripotent stem cells. Molecular Biology Reports, 40(4), 3023–3031.10.1007/s11033-012-2376-3
  • Havasi, P., Soleimani, M., Morovvati, H., Bakhshandeh, B., & Nabiuni, M. (2014). The proliferation study of hips cell-derived neuronal progenitors on poly-caprolactone scaffold. Basic and Clinical Neuroscience, 5(2), 117–123.
  • He, B., Zhu, Q., Chai, Y., Ding, X., Tang, J., Gu, L., & Liu, X. (2015). Safety and efficacy evaluation of a human acellular nerve graft as a digital nerve scaffold: A prospective, multicentre controlled clinical trial. Journal of Tissue Engineering and Regenerative Medicine, 9(3), 286–295.10.1002/term.v9.3
  • Mohd Hilmi, A. B., & Halim, A. S. (2015). Vital roles of stem cells and biomaterials in skin tissue engineering. World Journal of Stem Cells, 7(2), 428–436.10.4252/wjsc.v7.i2.428
  • Horst, M., Madduri, S., Milleret, V., Sulser, T., Gobet, R., & Eberli, D. (2013). A bilayered hybrid microfibrous PLGA–Acellular matrix scaffold for hollow organ tissue engineering. Biomaterials, 34(5), 1537–1545.10.1016/j.biomaterials.2012.10.075
  • Hosoya, M. (2012). Preparation of pancreatic beta-cells from human iPS cells with small molecules. Islets, 4(3), 249–252.
  • Hosoya, M., Kunisada, Y., Kurisaki, A., & Asashima, M. (2012). Induction of differentiation of undifferentiated cells into pancreatic beta cells in vertebrates. Int J Dev Biol, 56(5), 313–323.
  • Hsu, S.-H., Tsai, I.-J., Lin, D.-J., & Chen, D. C. (2005). The effect of dynamic culture conditions on endothelial cell seeding and retention on small diameter polyurethane vascular grafts. Medical Engineering & Physics, 27(3), 267–272.10.1016/j.medengphy.2004.10.008
  • Huang, Y., Onyeri, S., Siewe, M., Moshfeghian, A., & Madihally, S. V. (2005). In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials, 26(36), 7616–7627.10.1016/j.biomaterials.2005.05.036
  • Illing, A., Stockmann, M., Swamy Telugu, N., Linta, L., Russell, R., Muller, M., & Kleger, A. (2013). Definitive Endoderm Formation from Plucked Human Hair-Derived Induced Pluripotent Stem Cells and SK Channel Regulation. Stem Cells Int, 2013, 360573.
  • Izal, I., Aranda, P., Sanz-Ramos, P., Ripalda, P., Mora, G., Granero-Moltó, F., … Prosper, F. (2013). Culture of human bone marrow-derived mesenchymal stem cells on of poly(l-lactic acid) scaffolds: Potential application for the tissue engineering of cartilage. Knee Surgery, Sports Traumatology, Arthroscopy, 21(8), 1737–1750.10.1007/s00167-012-2148-6
  • Jaiswal, N., Haynesworth, S. E., Caplan, A. I., & Bruder, S. P. (1997). Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. Journal of Cellular Biochemistry, 64(2), 295–312.10.1002/(ISSN)1097-4644
  • Jiang, Q., Reddy, N., Zhang, S., Roscioli, N., & Yang, Y. (2013). Water-stable electrospun collagen fibers from a non-toxic solvent and crosslinking system. Journal of Biomedical Materials Research Part A, 101A(5), 1237–1247.10.1002/jbm.a.v101a.5
  • Jin, J., Wang, J., Huang, J., Huang, F., Fu, J., Yang, X., & Miao, Z. (2014). Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits. Journal of Bioscience and Bioengineering, 118(5), 593–598.10.1016/j.jbiosc.2014.05.001
  • Kafienah, W., Mistry, S., Dickinson, S. C., Sims, T. J., Learmonth, I., & Hollander, A. P. (2007). Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis & Rheumatism, 56(1), 177–187.10.1002/(ISSN)1529-0131
  • Kao, C. T., Lin, C. C., Chen, Y. W., Yeh, C. H., Fang, H. Y., & Shie, M. Y. (2015). Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Materials Science and Engineering: C, 56, 165–173.10.1016/j.msec.2015.06.028
  • Kappos, E. A., Engels, P. E., Tremp, M., & Meyer zu Schwabedissen, M., di Summa, P., Fischmann, A., … Kalbermatten, D. F. (2015). Peripheral Nerve Repair: Multimodal Comparison of the Long-Term Regenerative Potential of Adipose Tissue-Derived Cells in a Biodegradable Conduit. Stem Cells and Development, 24(18), 2127–2141.10.1089/scd.2014.0424
  • Karageorgiou, V., Meinel, L., Hofmann, S., Malhotra, A., Volloch, V., & Kaplan, D. (2004). Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. Journal of Biomedical Materials Research, 71A(3), 528–537.10.1002/(ISSN)1097-4636
  • Karam, J. P., Muscari, C., & Montero-Menei, C. N. (2012). Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials, 33(23), 5683–5695.10.1016/j.biomaterials.2012.04.028
  • Kelm, J. M., Djonov, V., Ittner, L. M., Fluri, D., Born, W., Hoerstrup, S. P., & Fussenegger, M. (2006). Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue Engineering, 12(8), 2151–2160.10.1089/ten.2006.12.2151
  • Kew, S. J., Gwynne, J. H., Enea, D., Brookes, R., Rushton, N., Best, S. M., & Cameron, R. E. (2012). Synthetic collagen fascicles for the regeneration of tendon tissue. Acta Biomaterialia, 8(10), 3723–3731.10.1016/j.actbio.2012.06.018
  • Khor, E., & Lim, L. Y. (2003). Implantable applications of chitin and chitosan. Biomaterials, 24(13), 2339–2349.10.1016/S0142-9612(03)00026-7
  • Kijeńska, E., Prabhakaran, M. P., Swieszkowski, W., Kurzydlowski, K. J., & Ramakrishna, S. (2012). Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 100B(4), 1093–1102.10.1002/jbm.b.v100b.4
  • Kilian, K. A., Bugarija, B., Lahn, B. T., & Mrksich, M. (2010). Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences, 107(11), 4872–4877.10.1073/pnas.0903269107
  • Kim, Y. J., Kim, B., Kim, J. W., Nam, G., Jang, H. S., Kang, S. W., & Jeong, U. (2015). Combination of nanoparticles with photothermal effects and phase-change material enhances the non-invasive transdermal delivery of drugs. Colloids and Surfaces B: Biointerfaces, 135, 324–331.10.1016/j.colsurfb.2015.07.061
  • Kim, P., Kwon, K. W., Park, M. C., Lee, S. H., Kim, S. M., & Suh, K. Y. (2008). Soft lithography for microfluidics: A review, Biochip Journal, 2(1), 1–11.
  • Kim, S. E., Yun, Y. P., Shim, K. S., Park, K., Choi, S. W., Shin, D. H., & Suh, D. H. (2015). Fabrication of a BMP-2-immobilized porous microsphere modified by heparin for bone tissue engineering. Colloids and Surfaces B: Biointerfaces, 134, 453–460.10.1016/j.colsurfb.2015.05.003
  • Kitahara, S., Nakagawa, K., Sah, R. L., Wada, Y., Ogawa, T., Moriya, H., & Masuda, K. (2008). In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite. Tissue Engineering Part A, 14(11), 1905–1913.10.1089/ten.tea.2006.0419
  • Knecht, S., Erggelet, C., Endres, M., Sittinger, M., Kaps, C., & Stüssi, E. (2007). Mechanical testing of fixation techniques for scaffold-based tissue-engineered grafts. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83B(1), 50–57.10.1002/(ISSN)1552-4981
  • Kodali, A., Lim, T. C., Leong, D. T., & Tong, Y. W. (2014). Cell-microsphere constructs formed with human adipose-derived stem cells and gelatin microspheres promotes stemness, differentiation, and controlled pro-angiogenic potential. Macromolecular Bioscience, 14(10), 1458–1468.10.1002/mabi.201400094
  • Kon, E., Buda, R., Filardo, G., Di Martino, A., Timoncini, A., Cenacchi, A., … Marcacci, M. (2010). Platelet-rich plasma: Intra-articular knee injections produced favorable results on degenerative cartilage lesions. Knee Surgery, Sports Traumatology, Arthroscopy, 18(4), 472–479.10.1007/s00167-009-0940-8
  • Kreke, M. R., Huckle, W. R., & Goldstein, A. S. (2005). Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone, 36(6), 1047–1055.10.1016/j.bone.2005.03.008
  • Kuo, Y. C., & Chang, Y. H. (2013). Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials. Colloids and Surfaces B: Biointerfaces, 102, 405–411.
  • L’Heureux, N., Dusserre, N., Konig, G., Victor, B., Keire, P., Wight, T. N., … Hoyt, G. (2006). Human tissue-engineered blood vessels for adult arterial revascularization. Nature Medicine, 12(3), 361–365.10.1038/nm1364
  • Labet, M., & Thielemans, W. (2009). Synthesis of polycaprolactone: A review. Chemical Society Reviews, 38(12), 3484–3504.10.1039/b820162p
  • Labrador, R. O., Buti, M., & Navarro, X. (1995). Peripheral nerve repair: Role of agarose matrix density on functional recovery. NeuroReport, 6(15), 2022–2026.10.1097/00001756-199510010-00017
  • Lee, S. S., Huang, B. J., Kaltz, S. R., Sur, S., Newcomb, C. J., Stock, S. R., … Stupp, S. I. (2013). Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials, 34(2), 452–459.10.1016/j.biomaterials.2012.10.005
  • Lee, S. Y., Kim, H. J., & Choi, D. (2015). Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. International Journal of Stem Cells, 8(1), 36–47.10.15283/ijsc.2015.8.1.36
  • Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106–126.10.1016/j.progpolymsci.2011.06.003
  • Lee, J. H., Rim, N. G., Jung, H. S., & Shin, H. (2010). Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly[lactic-co-(glycolic acid)] and hydroxyapatite. Macromolecular Bioscience, 10(2), 173–182.10.1002/mabi.v10:2
  • Lee, K., Silva, E. A., & Mooney, D. J. (2011). Growth factor delivery-based tissue engineering: General approaches and a review of recent developments. Journal of The Royal Society Interface, 8(55), 153–170.10.1098/rsif.2010.0223
  • Lei, Y., Rahim, M., Ng, Q., & Segura, T. (2011). Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. Journal of Controlled Release, 153(3), 255–261.10.1016/j.jconrel.2011.01.028
  • Lelkes, P. I., Li, M., Perets, A., Mondrinos, M. J., Guo, Y., Chen, X., … Wei, Y. (2007). Designing intelligent polymeric scaffolds for tissue engineering: Blending and co-electrospinning synthetic and natural polymers. Experimental analysis of nano and engineering materials and structures, 831–832. Springer.
  • Lévesque, S. G., Lim, R. M., & Shoichet, M. S. (2005). Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials, 26(35), 7436–7446.10.1016/j.biomaterials.2005.05.054
  • Lévesque, S. G., & Shoichet, M. S. (2006). Synthesis of cell-adhesive dextran hydrogels and macroporous scaffolds. Biomaterials, 27(30), 5277–5285.10.1016/j.biomaterials.2006.06.004
  • Li, X., He, X. T., Yin, Y., Wu, R. X., Tian, B. M., & Chen, F. M. (2017). Administration of signalling molecules dictates stem cell homing for in situ regeneration. Journal of Cellular and Molecular Medicine, 27(30), 5277–5285.
  • Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., & Zhang, M. (2005). Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 26(18), 3919–3928.10.1016/j.biomaterials.2004.09.062
  • Li, Z., & Zhang, M. (2005). Chitosan-alginate as scaffolding material for cartilage tissue engineering. Journal of Biomedical Materials Research Part A, 75A(2), 485–493.10.1002/(ISSN)1552-4965
  • Liu, Y., Chan, J. K. Y., & Teoh, S. H. (2015). Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. Journal of Tissue Engineering and Regenerative Medicine, 9(2), 85–105.10.1002/term.v9.2
  • Liu, Y., Hu, J., Zhuang, X., Zhang, P., Wei, Y., Wang, X., & Chen, X. (2012). Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin. Macromolecular Bioscience, 12(2), 241–250.10.1002/mabi.v12.2
  • Liu, J., Yu, F., Sun, Y., Jiang, B., Zhang, W., Yang, J., … Liu, S. (2015). Concise reviews: Characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells, 33(3), 627–638.10.1002/stem.1909
  • Liu, T., Zhang, S., Chen, X., Li, G., & Wang, Y. (2010). Hepatic differentiation of mouse embryonic stem cells in three-dimensional polymer scaffolds. Tissue Engineering Part A, 16(4), 1115–1122.
  • Loo, J. S., Ooi, C. P., & Boey, F. Y. (2005). Degradation of poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) by electron beam radiation. Biomaterials, 26(12), 1359–1367.10.1016/j.biomaterials.2004.05.001
  • Lovett, M., Lee, K., Edwards, A., & Kaplan, D. L. (2009). Vascularization Strategies for Tissue Engineering. Tissue Engineering Part B: Reviews, 15(3), 353–370.10.1089/ten.teb.2009.0085
  • Luyten, F. P., Lories, R. J., Verschueren, P., de Vlam, K., & Westhovens, R. (2006). Contemporary concepts of inflammation, damage and repair in rheumatic diseases. Best Practice & Research Clinical Rheumatology, 20(5), 829–848.10.1016/j.berh.2006.06.009
  • Luyten, F. P., & Vanlauwe, J. (2012). Tissue engineering approaches for osteoarthritis. Bone, 51(2), 289–296.10.1016/j.bone.2011.10.007
  • Lynam, D. A., Shahriari, D., Wolf, K. J., Angart, P. A., Koffler, J., Tuszynski, M. H., … Sakamoto, J. (2015). Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds. Acta Biomaterialia, 18, 128–131.10.1016/j.actbio.2015.02.014
  • Madhumathi, K., Shalumon, K., Rani, V. D., Tamura, H., Furuike, T., Selvamurugan, N., … Jayakumar, R. (2009). Wet chemical synthesis of chitosan hydrogel–hydroxyapatite composite membranes for tissue engineering applications. International Journal of Biological Macromolecules, 45(1), 12–15.10.1016/j.ijbiomac.2009.03.011
  • Mahjour, S. B., Ghaffarpasand, F., & Wang, H. (2012). Hair follicle regeneration in skin grafts: current concepts and future perspectives. Tissue Engineering Part B: Reviews, 18(1), 15–23.10.1089/ten.teb.2011.0064
  • Makris, E. A., Gomoll, A. H., Malizos, K. N., Hu, J. C., & Athanasiou, K. A. (2015). Repair and tissue engineering techniques for articular cartilage. Nature Reviews Rheumatology, 11(1), 21–34.10.1038/nrrheum.2014.157
  • Mansouri, N., & SamiraBagheri (2016). The influence of topography on tissue engineering perspective. Materials Science and Engineering: C, 61, 906–921.10.1016/j.msec.2015.12.094
  • Martens, W., Bronckaers, A., Politis, C., Jacobs, R., & Lambrichts, I. (2013). Dental stem cells and their promising role in neural regeneration: An update. Clinical Oral Investigations, 17(9), 1969–1983.10.1007/s00784-013-1030-3
  • Martin, B. C., Minner, E. J., Wiseman, S. L., Klank, R. L., & Gilbert, R. J. (2008). Agarose and methylcellulose hydrogel blends for nerve regeneration applications. Journal of Neural Engineering, 5(2), 221–231.10.1088/1741-2560/5/2/013
  • Martins, A., Chung, S., Pedro, A. J., Sousa, R. A., Marques, A. P., Reis, R. L., & Neves, N. M. (2009). Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 3(1), 37–42.10.1002/term.v3:1
  • McGuigan, A. P., & Sefton, M. V. (2006). Vascularized organoid engineered by modular assembly enables blood perfusion. Proceedings of the National Academy of Sciences, 103(31), 11461–11466.10.1073/pnas.0602740103
  • Meyer, K., & Palmer, J. W. (1934). The polysaccharide of the vitreous humor. Journal of Biological Chemistry, 107(3), 629–634.
  • Mohamadyar-Toupkanlou, F., Vasheghani-Farahani, E., Bakhshandeh, B., Soleimani, M., & Ardeshirylajimi, A. (2015). In Vitro and In Vivo investigations on fibronectin coated and hydroxyapatite incorporated scaffolds. Cell Mol Biol (Noisy-le-grand), 61(4), 1–7.
  • Monier, M., Ayad, D. M., & Abdel-Latif, D. A. (2012). Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff’s base. Colloids and Surfaces B: Biointerfaces, 94, 250–258.10.1016/j.colsurfb.2012.01.051
  • Moreira-Teixeira, L. S., Georgi, N., Leijten, J., Wu, L., & Karperien, M. (2011). Cartilage. Tissue Engineering., 21, 102–115.
  • Mu, C., Zhang, K., Lin, W., & Li, D. (2013). Ring-opening polymerization of genipin and its long-range crosslinking effect on collagen hydrogel. Journal of Biomedical Materials Research Part A, 101A(2), 385–393.10.1002/jbm.a.v101a.2
  • Mullen, L. M., Best, S. M., Ghose, S., Wardale, J., Rushton, N., & Cameron, R. E. (2015). Bioactive IGF-1 release from collagen-GAG scaffold to enhance cartilage repair in vitro. Journal of Materials Science: Materials in Medicine, 26(1), 5325.
  • Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773–785.10.1038/nbt.2958
  • Murugan, R., & Ramakrishna, S. (2007). Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Engineering, 13(8), 1845–1866.10.1089/ten.2006.0078
  • Nakamura, M., Kobayashi, A., Takagi, F., Watanabe, A., Hiruma, Y., Ohuchi, K., & Takatani, S. (2005). Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Engineering, 11(11-12), 1658–1666.10.1089/ten.2005.11.1658
  • Narayanan, R. P., Melman, G., Letourneau, N. J., Mendelson, N. L., & Melman, A. (2012). Photodegradable Iron(III) cross-linked alginate gels. Biomacromolecules, 13(8), 2465–2471.10.1021/bm300707a
  • Nieponice, A., Soletti, L., Guan, J., Deasy, B. M., Huard, J., Wagner, W. R., & Vorp, D. A. (2008). Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique. Biomaterials, 29(7), 825–833.10.1016/j.biomaterials.2007.10.044
  • Norman, J. J., & Desai, T. A. (2006). Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Annals of Biomedical Engineering, 34(1), 89–101.10.1007/s10439-005-9005-4
  • Novosel, E. C., Kleinhans, C., & Kluger, P. J. (2011). Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews, 63(4-5), 300–311.10.1016/j.addr.2011.03.004
  • Ohmine, S., Squillace, K. A., Hartjes, K. A., Deeds, M. C., Armstrong, A. S., Thatava, T., … Ikeda, Y. (2012). Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency. Aging, 4(1), 60–73.10.18632/aging.v4i1
  • Park, S. A., Lee, S. H., & Kim, W. D. (2011). Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Bioprocess and Biosystems Engineering, 34(4), 505–513.10.1007/s00449-010-0499-2
  • Parker, K. K., Brock, A. L., Brangwynne, C., Mannix, R. J., Wang, N., Ostuni, E., … Ingber, D. E. (2002). Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. The FASEB Journal, 16(10), 1195–1204.10.1096/fj.02-0038com
  • Patrachari, A. R., Podichetty, J. T., & Madihally, S. V. (2012). Application of computational fluid dynamics in tissue engineering. Journal of Bioscience and Bioengineering, 114(2), 123–132.10.1016/j.jbiosc.2012.03.010
  • Peng, H., Yin, Z., Liu, H., Chen, X., Feng, B., Yuan, H., … Zhang, Y. (2012). Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Nanotechnology, 23(48), 485102.10.1088/0957-4484/23/48/485102
  • Perea, H., Aigner, J., Hopfner, U., & Wintermantel, E. (2006). Direct magnetic tubular cell seeding: a novel approach for vascular tissue engineering. Cells Tissues Organs, 183(3), 156–165.10.1159/000095989
  • Perng, C. K., Wang, Y. J., Tsi, C. H., & Ma, H. (2011). In vivo angiogenesis effect of porous collagen scaffold with hyaluronic acid oligosaccharides. Journal of Surgical Research, 168(1), 9–15.10.1016/j.jss.2009.09.052
  • Pertici, V., Trimaille, T., Laurin, J., Felix, M. S., Marqueste, T., Pettmann, B., & Decherchi, P. (2014). Repair of the injured spinal cord by implantation of a synthetic degradable block copolymer in rat. Biomaterials, 35(24), 6248–6258.10.1016/j.biomaterials.2014.04.020
  • Petersen, T. H., Calle, E. A., Colehour, M. B., & Niklason, L. E. (2012). Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs, 195(3), 222–231.10.1159/000324896
  • Petsche Connell, J., Camci-Unal, G., Khademhosseini, A., & Jacot, J. G. (2013). Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications. Tissue Engineering Part B: Reviews, 19(4), 368–379.10.1089/ten.teb.2012.0561
  • Pins, G. D., Toner, M., & Morgan, J. R. (2000). Microfabrication of an analog of the basal lamina: Biocompatible membranes with complex topographies. The FASEB Journal, 14(3), 593–602.10.1096/fasebj.14.3.593
  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.10.1126/science.284.5411.143
  • Place, E. S., Nair, R., Chia, H. N., Szulgit, G., Lim, E. H., & Stevens, M. M. (2012). Latent TGF-beta hydrogels for cartilage tissue engineering. Advanced Healthcare Materials, 1(4), 480–484.10.1002/adhm.201200038
  • Pok, S., Dhane, D. V., & Madihally, S. V. (2013). Computational simulation modelling of bioreactor configurations for regenerating human bladder. Computer Methods in Biomechanics and Biomedical Engineering, 16(8), 840–851.10.1080/10255842.2011.641177
  • Pok, S., Myers, J. D., Madihally, S. V., & Jacot, J. G. (2013). A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomaterialia, 9(3), 5630–5642.10.1016/j.actbio.2012.10.032
  • Poojan, S., Kumar, S., Verma, V., Dhasmana, A., Lohani, M., & Verma, M. K. (2015). Correction: Disruption of skin stem cell homeostasis following transplacental arsenicosis; alleviation by combined intake of selenium and curcumin. PLoS One, 10(12), e0146001.10.1371/journal.pone.0146001
  • Prasad, T., Shabeena, E. A., Vinod, D., Kumary, T. V., & Anil Kumar, P. R. (2015). Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. J Mater Sci Mater Med, 26(1), 5352.
  • Qi, Y., Feng, G., & Yan, W. (2012). Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis. Molecular Biology Reports, 39(5), 5683–5689.10.1007/s11033-011-1376-z
  • Qi, M. C., Hu, J., Zou, S. J., Chen, H. Q., Zhou, H. X., & Han, L. C. (2008). Mechanical strain induces osteogenic differentiation: Cbfa1 and Ets-1 expression in stretched rat mesenchymal stem cells. International Journal of Oral and Maxillofacial Surgery, 37(5), 453–458.10.1016/j.ijom.2007.12.008
  • Qian, H., Wohl, A. R., Crow, J. T., Macosko, C. W., & Hoye, T. R. (2011). A Strategy for Control of “Random” Copolymerization of Lactide and Glycolide: Application to Synthesis of PEG-b-PLGA Block Polymers Having Narrow Dispersity. Macromolecules, 44(18), 7132–7140.10.1021/ma201169z
  • Radisic, M., Park, H., Chen, F., Salazar-Lazzaro, J. E., Wang, Y., Dennis, R., & Vunjak-Novakovic, G. (2006). Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Engineering, 12(8), 2077–2091.10.1089/ten.2006.12.2077
  • Radisic, M., Park, H., Martens, T. P., Salazar-Lazaro, J. E., Geng, W., Wang, Y., & Vunjak-Novakovic, G. (2008). Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. Journal of Biomedical Materials Research Part A, 86A(3), 713–724.10.1002/jbm.a.v86a:3
  • Ramalanjaona, G., Kempczinski, R. F., Rosenman, J. E., Douville, E. C., & Silberstein, E. B. (1986). The effect of fibronectin coating on endothelial cell kinetics in polytetrafluoroethylene grafts. Journal of Vascular Surgery, 3(2), 264–272.10.1016/0741-5214(86)90010-8
  • Ramos-Gomez, M., & Martinez-Serrano, A. (2016). Tracking of iron-labeled human neural stem cells by magnetic resonance imaging in cell replacement therapy for Parkinson’s disease. Neural Regeneration Research, 11(1), 49–52.
  • Ramsden, C. M., Powner, M. B., Carr, A. J., Smart, M. J., da Cruz, L., & Coffey, P. J. (2013). Stem cells in retinal regeneration: Past, present and future. Development, 140(12), 2576–2585.10.1242/dev.092270
  • Rasal, R. M., & Hirt, D. E. (2009). Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization. Journal of Biomedical Materials Research Part A, 88A(4), 1079–1086.10.1002/jbm.a.v88a:4
  • Ravichandran, R., Sundarrajan, S., Venugopal, J. R., Mukherjee, S., & Ramakrishna, S. (2012). Advances in polymeric systems for tissue engineering and biomedical applications. Macromolecular Bioscience, 12(3), 286–311.10.1002/mabi.v12.3
  • Rehm, B. H. (2010). Bacterial polymers: Biosynthesis, modifications and applications. Nature Reviews Microbiology, 8(8), 578–592.10.1038/nrmicro2354
  • Reis, L. A., Chiu, L. L., Liang, Y., Hyunh, K., Momen, A., & Radisic, M. (2012). A peptide-modified chitosan–collagen hydrogel for cardiac cell culture and delivery. Acta Biomaterialia, 8(3), 1022–1036.10.1016/j.actbio.2011.11.030
  • Rouwkema, J., Boer, J. D., & Blitterswijk, C. A. V. (2006). Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Engineering, 12(9), 2685–2693.10.1089/ten.2006.12.2685
  • Russo, A., Shelyakova, T., Casino, D., Lopomo, N., Strazzari, A., Ortolani, A., & Marcacci, M. (2012). A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects. Medical Engineering & Physics, 34(9), 1287–1293.10.1016/j.medengphy.2011.12.019
  • Sadeghi, M., Bakhshandeh, B., Dehghan, M. M., Mehrnia, M. R., & Khojasteh, A. (2016). Functional synergy of anti-mir221 and nanohydroxyapatite scaffold in bone tissue engineering of rat skull. Journal of Materials Science: Materials in Medicine, 27(8), 3007.10.1007/s10856-016-5746-x
  • Salacinski, H., Tiwari, A., Hamilton, G., & Seifalian, A. (2001). Cellular engineering of vascular bypass grafts: Role of chemical coatings for enhancing endothelial cell attachment. Medical and Biological Engineering and Computing, 39(6), 609–618.10.1007/BF02345431
  • Samadi, N., Abbadessa, A., Di Stefano, A., van Nostrum, C. F., Vermonden, T., Rahimian, S., … Hennink, W. E. (2013). The effect of lauryl capping group on protein release and degradation of poly(d,l-lactic-co-glycolic acid) particles. Journal of Controlled Release, 172(2), 436–443.10.1016/j.jconrel.2013.05.034
  • Sapir, Y., Kryukov, O., & Cohen, S. (2011). Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials, 32(7), 1838–1847.10.1016/j.biomaterials.2010.11.008
  • Saris, D., Price, A., Widuchowski, W., Bertrand-Marchand, M., Caron, J., Drogset, J. O., & Kili, S. (2014). Matrix-Applied Characterized Autologous Cultured Chondrocytes Versus Microfracture Two-Year Follow-up of a Prospective Randomized Trial. The American journal of sports medicine, 42(6), 1384–1394.
  • Scaglione, S., Wendt, D., Miggino, S., Papadimitropoulos, A., Fato, M., Quarto, R., & Martin, I. (2008). Effects of fluid flow and calcium phosphate coating on human bone marrow stromal cells cultured in a defined 2D model system. Journal of Biomedical Materials Research Part A, 86A(2), 411–419.10.1002/(ISSN)1552-4965
  • Schmidt, D., Stock, U. A., & Hoerstrup, S. P. (2007). Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1484), 1505–1512.10.1098/rstb.2007.2131
  • Schofer, M. D., Boudriot, U., Wack, C., Leifeld, I., Gräbedünkel, C., Dersch, R., & Paletta, J. R. J. (2009). Influence of nanofibers on the growth and osteogenic differentiation of stem cells: A comparison of biological collagen nanofibers and synthetic PLLA fibers. Journal of Materials Science: Materials in Medicine, 20(3), 767–774.
  • Sehgal, R. R., Roohani-Esfahani, S. I., Zreiqat, H., & Banerjee, R. (2015). Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 20(3), 767–774.
  • Shafiq, M., Jung, Y., & Kim, S. H. (2016). Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials, 90, 85–115.10.1016/j.biomaterials.2016.03.020
  • Shafy, A., Fink, T., Zachar, V., Lila, N., Carpentier, A., & Chachques, J. C. (2013). Development of cardiac support bioprostheses for ventricular restoration and myocardial regeneration. European Journal of Cardio-Thoracic Surgery, 43(6), 1211–1219.10.1093/ejcts/ezs480
  • Sheyn, D., Mizrahi, O., Benjamin, S., Gazit, Z., Pelled, G., & Gazit, D. (2010). Genetically modified cells in regenerative medicine and tissue engineering. Advanced Drug Delivery Reviews, 62(7-8), 683–698.10.1016/j.addr.2010.01.002
  • Shi, Q., Li, Y., Sun, J., Zhang, H., Chen, L., Chen, B., … Wang, Z. (2012). The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials, 33(28), 6644–6649.10.1016/j.biomaterials.2012.05.071
  • Shimizu, K., Ito, A., Arinobe, M., Murase, Y., Iwata, Y., Narita, Y., … Honda, H. (2007). Effective cell-seeding technique using magnetite nanoparticles and magnetic force onto decellularized blood vessels for vascular tissue engineering. Journal of Bioscience and Bioengineering, 103(5), 472–478.10.1263/jbb.103.472
  • Silva, N. A., Sousa, R. A., Pires, A. O., Sousa, N., Salgado, A. J., & Reis, R. L. (2012). Interactions between Schwann and olfactory ensheathing cells with a starch/polycaprolactone scaffold aimed at spinal cord injury repair. Journal of Biomedical Materials Research Part A, 100A(2), 470–476.10.1002/jbm.a.v100a.2
  • Sirabella, D., Cimetta, E., & Vunjak-Novakovic, G. (2015). “The state of the heart”: Recent advances in engineering human cardiac tissue from pluripotent stem cells. Experimental Biology and Medicine, 240(8), 1008–1018.10.1177/1535370215589910
  • Soldatow, V. Y., LeCluyse, E. L., Griffith, L. G., & Rusyn, I. (2013). In vitro models for liver toxicity testing. Toxicol Research, 2(1), 23–39.10.1039/C2TX20051A
  • Soletti, L., Nieponice, A., Guan, J., Stankus, J. J., Wagner, W. R., & Vorp, D. A. (2006). A seeding device for tissue engineered tubular structures. Biomaterials, 27(28), 4863–4870.10.1016/j.biomaterials.2006.04.042
  • Song, K., Li, L., Li, W., Zhu, Y., Jiao, Z., Lim, M., … Liu, T. (2015). Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Materials Science and Engineering: C, 55, 384–392.10.1016/j.msec.2015.05.062
  • Srinageshwar, B., Maiti, P., Dunbar, G. L., & Rossignol, J. (2016). Role of Epigenetics in Stem Cell Proliferation and Differentiation: Implications for Treating Neurodegenerative Diseases. International Journal of Molecular Sciences, 17(2), 1–15.
  • Reddy, C. S., Venugopal, J. R., Ramakrishna, S., & Zussman, E. (2014). Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering. Journal of Biomedical Materials Research Part A, 102(10), 3713–3725.10.1002/jbm.a.35045
  • Steadman, J. R., Rodkey, W. G., Briggs, K. K., & Rodrigo, J. J. (1999). The microfracture technic in the management of complete cartilage defects in the knee joint. Der Orthopade, 28(1), 26–32.
  • Stevens, K. R., Kreutziger, K. L., Dupras, S. K., Korte, F. S., Regnier, M., Muskheli, V., … Murry, C. E. (2009). Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proceedings of the National Academy of Sciences, 106(39), 16568–16573.10.1073/pnas.0908381106
  • Su, L.-C. (2007). Surface patterning of biodegradable polymer in tissue engineering by applying photolithography: ProQuest Dissertations Publishing, 2007. 1447292.
  • Sucosky, P., Osorio, D. F., Brown, J. B., & Neitzel, G. P. (2004). Fluid mechanics of a spinner-flask bioreactor. Biotechnology and Bioengineering, 85(1), 34–46.10.1002/(ISSN)1097-0290
  • Sun, G., Zhang, X., Shen, Y. I., Sebastian, R., Dickinson, L. E., Fox-Talbot, K., … Gerecht, S. (2011). Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proceedings of the National Academy of Sciences, 108(52), 20976–20981.10.1073/pnas.1115973108
  • Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D. L., Brittberg, M., & Gatenholm, P. (2005). Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials, 26(4), 419–431.10.1016/j.biomaterials.2004.02.049
  • Szkolnicka, D., & Hay, D. C. (2016). Concise Review: Advances in generating hepatocytes from pluripotent stem cells for translational medicine. Stem Cells, 34(6), 1421–1426.
  • Toh, Y.-C., Zhang, C., Zhang, J., Khong, Y. M., Chang, S., Samper, V. D., … Yu, H. (2007). A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab on a Chip, 7(3), 302–309.10.1039/b614872 g
  • Tsai, M. T., Li, W. J., Tuan, R. S., & Chang, W. H. (2009). Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation. Journal of Orthopaedic Research, 27(9), 1169.10.1002/jor.v27:9
  • Tsuda, Y., Shimizu, T., Yamato, M., Kikuchi, A., Sasagawa, T., Sekiya, S., … Okano, T. (2007). Cellular control of tissue architectures using a three-dimensional tissue fabrication technique. Biomaterials, 28(33), 4939–4946.10.1016/j.biomaterials.2007.08.002
  • Udelsman, B., Hibino, N., Villalona, G. A., McGillicuddy, E., Nieponice, A., Sakamoto, Y., … Breuer, C. K. (2011). Development of an operator-independent method for seeding tissue-engineered vascular grafts. Tissue Engineering Part C: Methods, 17(7), 731–736.10.1089/ten.tec.2010.0581
  • Van Assche, D., Staes, F., Van Caspel, D., Vanlauwe, J., Bellemans, J., Saris, D. B., & Luyten, F. P. (2010). Autologous chondrocyte implantation versus microfracture for knee cartilage injury: A prospective randomized trial, with 2-year follow-up. Knee Surgery, Sports Traumatology, Arthroscopy, 18(4), 486–495.10.1007/s00167-009-0955-1
  • Vapniarsky, N., Arzi, B., Hu, J. C., Nolta, J. A., & Athanasiou, K. A. (2015). Concise review: Human dermis as an autologous source of stem cells for tissue engineering and regenerative medicine. Stem Cells Translational Medicine, 18(4), 486–495.
  • Wang, X. (2013). Overview on biocompatibilities of implantable biomaterials. INTECH Open Access Publisher. doi: 10.5772/53461
  • Wen, Y., Jiang, B., Cui, J., Li, G., Yu, M., Wang, F., & Xu, X. (2013). Superior osteogenic capacity of different mesenchymal stem cells for bone tissue engineering. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 116(5), e324–e332.10.1016/j.oooo.2012.02.024
  • Wenger, A., Stahl, A., Weber, H., Finkenzeller, G., Augustin, H. G., Stark, G. B., & Kneser, U. (2004). Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Engineering, 10(9-10), 1536–1547.10.1089/ten.2004.10.1536
  • Williams, C., & Wick, T. M. (2004). Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Engineering, 10(5-6), 930–941.10.1089/1076327041348536
  • Wilson, L. D., Pratt, D. Y., & Kozinski, J. A. (2013). Preparation and sorption studies of beta-cyclodextrin-chitosan-glutaraldehyde terpolymers. Journal of Colloid and Interface Science, 393, 271–277.10.1016/j.jcis.2012.10.046
  • Wu, L., Cai, X., Zhang, S., Karperien, M., & Lin, Y. (2013). Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: Perspectives from stem cell biology and molecular medicine. Journal of Cellular Physiology, 228(5), 938–944.10.1002/jcp.24255
  • Wu, S. M., & Hochedlinger, K. (2011). Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biology, 13(5), 497–505.10.1038/ncb0511-497
  • Xue, C., Hu, N., Gu, Y., Yang, Y., Liu, Y., Liu, J., & Gu, X. (2012). Joint use of a chitosan/PLGA scaffold and MSCs to bridge an extra large gap in dog sciatic nerve. Neurorehabilitation and Neural Repair, 26(1), 96–106.10.1177/1545968311420444
  • Yang, C., Hillas, P. J., Baez, J. A., Nokelainen, M., Balan, J., Tang, J., … Polarek, J. W. (2004). The application of recombinant human collagen in tissue engineering. BioDrugs, 18(2), 103–119.10.2165/00063030-200418020-00004
  • Yang, J. W., Zhang, Y. F., Sun, Z. Y., Song, G. T., & Chen, Z. (2015). Dental pulp tissue engineering with bFGF-incorporated silk fibroin scaffolds. Journal of Biomaterials Applications, 30(2), 221–229.10.1177/0885328215577296
  • Ye, J. C., Qin, Y., Wu, Y. F., Wang, P., Tang, Y., Huang, L., … Shen, H. Y. (2016). Using primate neural stem cells cultured in self-assembling peptide nanofiber scaffolds to repair injured spinal cords in rats. Spinal Cord, 56(1), 90.
  • Yin, F., Cai, J., Zen, W., Wei, Y., Zhou, W., Yuan, F., & Singh, S. R. (2015). Cartilage Regeneration of Adipose-Derived Stem Cells in the TGF-beta1-Immobilized PLGA-Gelatin Scaffold. Stem Cell Reviews and Reports, 11(3), 453–459.10.1007/s12015-014-9561-9
  • Yoo, H. S., Kim, T. G., & Park, T. G. (2009). Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Advanced Drug Delivery Reviews, 61(12), 1033–1042.10.1016/j.addr.2009.07.007
  • Yoshida, T., Miyaji, H., Otani, K., Inoue, K., Nakane, K., Nishimura, H., … Kawanami, M. (2015). Bone augmentation using a highly porous PLGA/beta-TCP scaffold containing fibroblast growth factor-2. Journal of Periodontal Research, 50(2), 265–273.10.1111/jre.2015.50.issue-2
  • Yu, J., Lee, A. R., Lin, W. H., Lin, C. W., Wu, Y. K., & Tsai, W. B. (2014). Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Engineering Part A, 20(13-14), 1896–1907.10.1089/ten.tea.2013.0008
  • Zare, M., Soleimani, M., Akbarzadeh, A., Bakhshandeh, B., Aghaee-Bakhtiari, S. H., & Zarghami, N. (2015). A novel protocol to differentiate induced pluripotent stem cells by neuronal microRNAs to provide a suitable cellular model. Chemical Biology & Drug Design, 86(2), 232–238.10.1111/cbdd.12485
  • Zhang, Y. S., Aleman, J., Arneri, A., Bersini, S., Piraino, F., Shin, S. R., … Khademhosseini, A. (2015). From cardiac tissue engineering to heart-on-a-chip: Beating challenges. Biomedical Materials, 10(3), 034006.
  • Zhang, W., Chen, J., Tao, J., Jiang, Y., Hu, C., Huang, L., & Ouyang, H. W. (2013). The use of type 1 collagen scaffold containing stromal cell-derived factor-1 to create a matrix environment conducive to partial-thickness cartilage defects repair. Biomaterials, 34(3), 713–723.10.1016/j.biomaterials.2012.10.027
  • Zhang, W., Yang, G., Wang, X., Jiang, L., Jiang, F., Li, G., & Jiang, X. (2017). Magnetically Controlled Growth-Factor-Immobilized Multilayer Cell Sheets for Complex Tissue Regeneration. Advance Materials, 29(43).
  • Zimmermann, W. H., Schneiderbanger, K., Schubert, P., Didie, M., Münzel, F., Heubach, J. F., & Eschenhagen, T. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90(2), 223–230.10.1161/hh0202.103644

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.