1,096
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Viruses, IRESs, and a universal translation initiation mechanism

ORCID Icon & ORCID Icon
Pages 60-75 | Received 11 Oct 2017, Accepted 28 Apr 2018, Published online: 28 May 2018

References

  • Benelli, D., & Londei, P. (2011). Translation initiation in Archaea: Conserved and domain-specific features. Biochemical Society Transactions, 39(1), 89–93. doi:10.1042/bst0390089
  • Bonner, J., Ts’O, P. O., & Vinograd, J. (1956). Microsomal nucleoprotein particles from pea seedlings. Journal of Biophysical and Biochemical Cytology, 2(4), 451–466.
  • Bretscher, M. S., & Marcker, K. A. (1966). Polypeptidyl-sigma-ribonucleic acid and amino-acyl-sigma-ribonucleic acid binding sites on ribosomes. Nature, 211(5047), 380–384.10.1038/211380a0
  • Chappell, S. A., Edelman, G. M., & Mauro, V. P. (2000). A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proceedings of the National Academy of Sciences USA, 97(4), 1536–1541.10.1073/pnas.97.4.1536
  • Colussi, T. M., Costantino, D. A., Zhu, J., Donohue, J. P., Korostelev, A. A., Jaafar, Z. A., & Kieft, J. S. (2015). Initiation of translation in bacteria by a structured eukaryotic IRES RNA. Nature, 519(7541), 110–113. doi:10.1038/nature14219
  • Dintzis, H. M. (1961). Assembly of the peptide chains of hemoglobin. Proceedings of the National Academy of Sciences USA, 47, 247–261.10.1073/pnas.47.3.247
  • Fernandez, I. S., Bai, X. C., Murshudov, G., Scheres, S. H., & Ramakrishnan, V. (2014). Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome. Cell, 157(4), 823–831. doi:10.1016/j.cell.2014.04.015
  • Filbin, M. E., & Kieft, J. S. (2009). Toward a structural understanding of IRES RNA function. Current Opinion in Structural Biology, 19(3), 267–276. doi:10.1016/j.sbi.2009.03.005
  • Garcia-Martin, J. A., Dotu, I., Fernandez-Chamorro, J., Lozano, G., Ramajo, J., Martinez-Salas, E., & Clote, P. (2016). RNAiFold2T: Constraint Programming design of thermo-IRES switches. Bioinformatics, 32(12), i360–i368. doi:10.1093/bioinformatics/btw265
  • Gordon, J. (1967). Interaction of guanosine 5’-triphosphate with a supernatant fraction from E. coli and aminoacyl-sRNA. Proceedings of the National Academy of Sciences USA, 58(4), 1574–1578.10.1073/pnas.58.4.1574
  • Gordon, J. (1969). Hydrolysis of guanosine 5’-triphosphate associated wh binding of aminoacyl transfer ribonucleic acid to ribosomes. Journal of Biological Chemistry, 244(20), 5680–5686.
  • Gradi, A., Svitkin, Y. V., Imataka, H., & Sonenberg, N. (1998). Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proceedings of the National Academy of Sciences USA, 95(19), 11089–11094.10.1073/pnas.95.19.11089
  • Hartz, D., McPheeters, D. S., & Gold, L. (1989). Selection of the initiator tRNA by Escherichia coli initiation factors. Genes & Development, 3(12A), 1899–1912.10.1101/gad.3.12a.1899
  • Hirashima, A., & Kaji, A. (1970). Factor dependent breakdown of polysomes. Biochemical and Biophysical Research Communications, 41(4), 877–883. doi:10.1016/0006-291X(70)90165-8 Retrieved from http://www.sciencedirect.com/science/article/pii/0006291X70901658
  • Hirashima, A., & Kaji, A. (1972). Factor-dependent release of ribosomes from messenger RNA. Requirement for two heat-stable factors. Journal of Molecular Biology, 65(1), 43–58.10.1016/0022-2836(72)90490-1
  • Hoagland, M. B., Stephenson, M. L., Scott, J. F., Hecht, L. I., & Zamecnik, P. C. (1958). A soluble ribonucleic acid intermediate in protein synthesis. Journal of Biological Chemistry, 231(1), 241–257.
  • Jaafar, Z. A., Oguro, A., Nakamura, Y., & Kieft, J. S. (2016). Translation initiation by the hepatitis C virus IRES requires eIF1A and ribosomal complex remodeling. Elife, 5, e21198. doi:10.7554/eLife.21198
  • Jackson, R. J. (2013). The current status of vertebrate cellular mRNA IRESs. Cold Spring Harbor Perspectives in Biology, 5(2), a011569. doi:10.1101/cshperspect.a011569
  • Jackson, R. J., Hellen, C. U., & Pestova, T. V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Reviews Molecular Cell Biology, 11(2), 113–127. doi:10.1038/nrm2838
  • Jan, E. (2006). Divergent IRES elements in invertebrates. Virus Research, 119(1), 16–28. doi:10.1016/j.virusres.2005.10.011
  • Jan, E., & Sarnow, P. (2002). Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. Journal of Molecular Biology, 324(5), 889–902.10.1016/S0022-2836(02)01099-9
  • Jan, E., Kinzy, T. G., & Sarnow, P. (2003). Divergent tRNA-like element supports initiation, elongation, and termination of protein biosynthesis. Proceedings of the National Academy of Sciences USA, 100(26), 15410–15415. doi:10.1073/pnas.2535183100
  • Kafasla, P., Morgner, N., Poyry, T. A., Curry, S., Robinson, C. V., & Jackson, R. J. (2009). Polypyrimidine tract binding protein stabilizes the encephalomyocarditis virus IRES structure via binding multiple sites in a unique orientation. Molecular Cell, 34(5), 556–568. doi:10.1016/j.molcel.2009.04.015
  • Kanamori, Y., & Nakashima, N. (2001). A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. RNA, 7(2), 266–274.10.1017/S1355838201001741
  • Kennell, D., & Riezman, H. (1977). Transcription and translation initiation frequencies of the Escherichia coli lac operon. Journal of Molecular Biology, 114(1), 1–21.10.1016/0022-2836(77)90279-0
  • Kieft, J. S. (2008). Viral IRES RNA structures and ribosome interactions. Trends in Biochemical Sciences, 33(6), 274–283. doi:10.1016/j.tibs.2008.04.007
  • Kim, J. H., Park, S. M., Park, J. H., Keum, S. J., & Jang, S. K. (2011). eIF2A mediates translation of hepatitis C viral mRNA under stress conditions. The EMBO Journal, 30(12), 2454–2464. doi:10.1038/emboj.2011.146
  • Koh, E. Y., Ho, S. C., Mariati, Z., Song, Z., Bi, X., Bardor, M., & Yang, Y. (2013). An internal ribosome entry site (IRES) mutant library for tuning expression level of multiple genes in mammalian cells. PLoS ONE, 8(12), e82100. doi:10.1371/journal.pone.0082100
  • Koh, C. S., Brilot, A. F., Grigorieff, N., & Korostelev, A. A. (2014). Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center. Proceedings of the National Academy of Sciences USA, 111(25), 9139–9144. doi:10.1073/pnas.1406335111
  • Komar, A. A., & Hatzoglou, M. (2005). Internal ribosome entry sites in cellular mRNAs: Mystery of their existence. Journal of Biological Chemistry, 280(25), 23425–23428. doi:10.1074/jbc.R400041200
  • Komar, A. A., & Hatzoglou, M. (2011). Cellular IRES-mediated translation: The war of ITAFs in pathophysiological states. Cell Cycle, 10(2), 229–240. doi:10.4161/cc.10.2.14472
  • Kondrashov, N., Pusic, A., Stumpf, C. R., Shimizu, K., Hsieh, A. C., Ishijima, J., & Barna, M. (2011). Ribosome-mediated specificity in Hox mRNA translation and vertebrate tissue patterning. Cell, 145(3), 383–397. doi:10.1016/j.cell.2011.03.028
  • Kozak, M. (1986). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell, 44(2), 283–292.10.1016/0092-8674(86)90762-2
  • Laursen, B. S., Sorensen, H. P., Mortensen, K. K., & Sperling-Petersen, H. U. (2005). Initiation of protein synthesis in bacteria. Microbiology and Molecular Biology Reviews, 69(1), 101–123. doi:10.1128/mmbr.69.1.101-123.2005
  • Li, J., Zhang, C., Jostock, T., & Dubel, S. (2007). Analysis of IgG heavy chain to light chain ratio with mutant Encephalomyocarditis virus internal ribosome entry site. Protein Engineering Design and Selection, 20(10), 491–496. doi:10.1093/protein/gzm038
  • Locker, N., Easton, L. E., & Lukavsky, P. J. (2007). HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly. The EMBO Journal, 26(3), 795–805. doi:10.1038/sj.emboj.7601549
  • Lockwood, A. H., Chakraborty, P. R., & Maitra, U. (1971). A complex between initiation factor IF2, guanosine triphosphate, and fMet-tRNA: An intermediate in initiation complex formation. Proceedings of the National Academy of Sciences USA, 68(12), 3122–3126.10.1073/pnas.68.12.3122
  • Martinez-Salas, E., Francisco-Velilla, R., Fernandez-Chamorro, J., Lozano, G., & Diaz-Toledano, R. (2015). Picornavirus IRES elements: RNA structure and host protein interactions. Virus Research, 206, 62–73. doi:10.1016/j.virusres.2015.01.012
  • Melnikov, S., Ben-Shem, A., Garreau de Loubresse, N., Jenner, L., Yusupova, G., & Yusupov, M. (2012). One core, two shells: Bacterial and eukaryotic ribosomes. Nature Structural & Molecular Biology, 19(6), 560–567. doi:10.1038/nsmb.2313
  • Meyer, K. D., Patil, D. P., Zhou, J., Zinoviev, A., Skabkin, M. A., Elemento, O., & Jaffrey, S. R. (2015). 5’ UTR m(6)A promotes cap-independent translation. Cell, 163(4), 999–1010. doi:10.1016/j.cell.2015.10.012
  • Milon, P., Maracci, C., Filonava, L., Gualerzi, C. O., & Rodnina, M. V. (2012). Real-time assembly landscape of bacterial 30S translation initiation complex. Nature Structural & Molecular Biology, 19(6), 609–615. doi:10.1038/nsmb.2285
  • Muhs, M., Hilal, T., Mielke, T., Skabkin, M. A., Sanbonmatsu, K. Y., Pestova, T. V., & Spahn, C. M. (2015). Cryo-EM of ribosomal 80S complexes with termination factors reveals the translocated cricket paralysis virus IRES. Molecular Cell, 57(3), 422–432. doi:10.1016/j.molcel.2014.12.016
  • Nishizuka, Y., & Lipmann, F. (1966a). Comparison of guanosine triphosphate split and polypeptide synthesis with a purified E. coli system. Proceedings of the National Academy of Sciences USA, 55(1), 212–219.10.1073/pnas.55.1.212
  • Nishizuka, Y., & Lipmann, F. (1966b). The interrelationship between guanosine triphosphatase and amino acid polymerization. Archives of Biochemistry and Biophysics, 116(1), 344–351.10.1016/0003-9861(66)90040-3
  • Ogawa, A. (2011). Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors. RNA, 17(3), 478–488. doi:10.1261/rna.2433111
  • Ogawa, A., Masuoka, H., & Ota, T. (2017). Artificial OFF-riboswitches that downregulate internal ribosome entry without hybridization switches in a eukaryotic cell-free translation system. ACS Synthetic Biology, 6(9), 1656–1662. doi:10.1021/acssynbio.7b00124
  • Owens, G. C., Chappell, S. A., Mauro, V. P., & Edelman, G. M. (2001). Identification of two short internal ribosome entry sites selected from libraries of random oligonucleotides. Proceedings of the National Academy of Sciences USA, 98(4), 1471–1476.10.1073/pnas.98.4.1471
  • Pape, T., Wintermeyer, W., & Rodnina, M. V. (1998). Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. The EMBO Journal, 17(24), 7490–7497. doi:10.1093/emboj/17.24.7490
  • Pape, T., Wintermeyer, W., & Rodnina, M. (1999). Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. The EMBO Journal, 18(13), 3800–3807. doi:10.1093/emboj/18.13.3800
  • Pelletier, J., & Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334(6180), 320–325. doi:10.1038/334320a0
  • Pelletier, J., Kaplan, G., Racaniello, V. R., & Sonenberg, N. (1988). Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5’ noncoding region. Molecular and Cellular Biology, 8(3), 1103–1112.10.1128/MCB.8.3.1103
  • Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J., & Hellen, C. U. (1998). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes & Development, 12(1), 67–83.10.1101/gad.12.1.67
  • Pestova, T. V., de Breyne, S., Pisarev, A. V., Abaeva, I. S., & Hellen, C. U. (2008). eIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: A common role of domain II. The EMBO Journal, 27(7), 1060–1072. doi:10.1038/emboj.2008.49
  • Petermann, M. L., & Hamilton, M. G. (1957). The purification and properties of cytoplasmic ribonucleoprotein from rat liver. Journal of Biological Chemistry, 224(2), 725–736.
  • Pfingsten, J. S., Costantino, D. A., & Kieft, J. S. (2006). Structural basis for ribosome recruitment and manipulation by a viral IRES RNA. Science, 314(5804), 1450–1454. doi:10.1126/science.1133281
  • Rheinberger, H. J., Sternbach, H., & Nierhaus, K. H. (1981). Three tRNA binding sites on Escherichia coli ribosomes. Proceedings of the National Academy of Sciences USA, 78(9), 5310–5314.10.1073/pnas.78.9.5310
  • Rodnina, M. V., Stark, H., Savelsbergh, A., Wieden, H. J., Mohr, D., Matassova, N. B., & Wintermeyer, W. (2000). GTPases mechanisms and functions of translation factors on the ribosome. Biological Chemistry, 381(5–6), 377–387. doi:10.1515/bc.2000.050
  • Salis, H. M. (2011). The ribosome binding site calculator. Methods in Enzymology, 498, 19–42. doi:10.1016/b978-0-12-385120-8.00002-4
  • Schachman, H. K., Pardee, A. B., & Stanier, R. Y. (1952). Studies on the macro-molecular organization of microbial cells. Archives of Biochemistry and Biophysics, 38, 245–260.10.1016/0003-9861(52)90029-5
  • Schuler, M., Connell, S. R., Lescoute, A., Giesebrecht, J., Dabrowski, M., Schroeer, B., & Spahn, C. M. (2006). Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nature Structural & Molecular Biology, 13(12), 1092–1096. doi:10.1038/nsmb1177
  • Sharma, D. K., Bressler, K., Patel, H., Balasingam, N., & Thakor, N. (2016). Role of eukaryotic initiation factors during cellular stress and cancer progression. Journal of Nucleic Acids, 2016, 8235121. doi:10.1155/2016/8235121
  • Shine, J., & Dalgarno, L. (1974). The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences USA, 71(4), 1342–1346.10.1073/pnas.71.4.1342
  • Skabkin, M. A., Skabkina, O. V., Dhote, V., Komar, A. A., Hellen, C. U., & Pestova, T. V. (2010). Activities of ligatin and MCT-1/DENR in eukaryotic translation initiation and ribosomal recycling. Genes & Development, 24(16), 1787–1801. doi:10.1101/gad.1957510
  • Sonenberg, N., & Hinnebusch, A. G. (2009). Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. Cell, 136(4), 731–745. doi:10.1016/j.cell.2009.01.042
  • Spahn, C. M., Jan, E., Mulder, A., Grassucci, R. A., Sarnow, P., & Frank, J. (2004). Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: The IRES functions as an RNA-based translation factor. Cell, 118(4), 465–475. doi:10.1016/j.cell.2004.08.001
  • Stephenson, M. L., Thimann, K. V., & Zamecnik, P. C. (1956). Incorporation of C14-amino acids into proteins of leaf disks and cell-free fractions of tobacco leaves. Archives of Biochemistry and Biophysics, 65(1), 194–209.10.1016/0003-9861(56)90187-4
  • Subramanian, A. R., & Davis, B. D. (1970). Activity of initiation factor F3 in dissociating Escherichia coli ribosomes. Nature, 228(5278), 1273–1275.10.1038/2281273a0
  • Sweeney, T. R., Abaeva, I. S., Pestova, T. V., & Hellen, C. U. (2014). The mechanism of translation initiation on Type 1 picornavirus IRESs. The EMBO Journal, 33(1), 76–92. doi:10.1002/embj.201386124
  • Telpalo-Carpio, S. A., Diaz-Mitoma, F., Moreno-Cuevas, J. E., & Aguilar-Yanez, J. M. (2015). Internal ribosome entry site (IRES) from Encephalomyocarditis virus (EMCV) as a tool for shuttle expression plasmids. Biochemical and Biophysical Research Communications, 468(4), 548–553. doi:10.1016/j.bbrc.2015.10.120
  • Temmel, H., Muller, C., Sauert, M., Vesper, O., Reiss, A., Popow, J., & Moll, I. (2017). The RNA ligase RtcB reverses MazF-induced ribosome heterogeneity in Escherichia coli. Nucleic Acids Research, 45(8), 4708–4721. doi:10.1093/nar/gkw1018
  • Terenin, I. M., Dmitriev, S. E., Andreev, D. E., & Shatsky, I. N. (2008). Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2. Nature Structural & Molecular Biology, 15(8), 836–841. doi:10.1038/nsmb.1445
  • Thakor, N., Smith, M. D., Roberts, L., Faye, M. D., Patel, H., Wieden, H. J., & Holcik, M. (2017). Cellular mRNA recruits the ribosome via eIF3-PABP bridge to initiate internal translation. RNA Biology, 14(5), 553–567. doi:10.1080/15476286.2015.1137419
  • Thompson, S. R., Gulyas, K. D., & Sarnow, P. (2001). Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element. Proceedings of the National Academy of Sciences USA, 98(23), 12972–12977. doi:10.1073/pnas.241286698
  • Venkatesan, A., & Dasgupta, A. (2001). Novel fluorescence-based screen to identify small synthetic internal ribosome entry site elements. Molecular and Cellular Biology, 21(8), 2826–2837. doi:10.1128/mcb.21.8.2826-2837.2001
  • Weingarten-Gabbay, S., Elias-Kirma, S., Nir, R., Gritsenko, A. A., Stern-Ginossar, N., Yakhini, Z., … Segal, E. (2016). Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science, 351(6270), 240. doi:10.1126/science.aad4939
  • Wilson, J. E., Powell, M. J., Hoover, S. E., & Sarnow, P. (2000). Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Molecular and Cellular Biology, 20(14), 4990–4999.10.1128/MCB.20.14.4990-4999.2000
  • Wintermeyer, W., & Gualerzi, C. (1983). Effect of Escherichia coli initiation factors on the kinetics of N-Acphe-tRNAPhe binding to 30S ribosomal subunits. A fluorescence stopped-flow study. Biochemistry, 22(3), 690–694.
  • Xue, S., Tian, S., Fujii, K., Kladwang, W., Das, R., & Barna, M. (2015). RNA regulons in Hox 5’ UTRs confer ribosome specificity to gene regulation. Nature, 517(7532), 33–38. doi:10.1038/nature14010
  • Yamamoto, H., Unbehaun, A., & Spahn, C. M. T. (2017). Ribosomal chamber music: Toward an understanding of IRES mechanisms. Trends in Biochemical Sciences, 42(8), 655–668. doi:10.1016/j.tibs.2017.06.002
  • Yu, Y., Abaeva, I. S., Marintchev, A., Pestova, T. V., & Hellen, C. U. (2011). Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Research, 39(11), 4851–4865. doi:10.1093/nar/gkr045
  • Zamir, A., Leder, P., & Elson, D. (1966). A ribosome-catalyzed reaction between N-formylmethionyl-tRNA and puromycin. Proceedings of the National Academy of Sciences USA, 56(6), 1794–1801.10.1073/pnas.56.6.1794
  • Zhou, W., Edelman, G. M., & Mauro, V. P. (2003). Isolation and identification of short nucleotide sequences that affect translation initiation in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences USA, 100(8), 4457–4462. doi:10.1073/pnas.0437993100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.