133
Views
8
CrossRef citations to date
0
Altmetric
Research Article

An engineering approach to design of dextran microgels size fabricated by water/oil emulsification

, , &
Pages 511-523 | Received 18 Nov 2015, Accepted 19 Jul 2016, Published online: 10 Aug 2016

References

  • Alderliesten M. Mean particle diameters. Part VII. The Rosin–Rammler size distribution: Physical and mathematical properties and relationships to moment‐ratio defined mean particle diameters. Part Part Syst Charact, 2013;30:244–57.
  • Alhaique F, Casadei MA, Cencetti C, Coviello T, Di Meo C, Matricardi P, Montanari E, Pacelli S, Paolicelli P. From macro to nano polysaccharide hydrogels: An opportunity for the delivery of drugs. J Drug Deliv Sci Technol, 2015;32:88–99.
  • Amer E-H, Cooke M, Kowalski A, Sharratt P. Dispersion of silicone oil in water surfactant solution: effect of impeller speed, oil viscosity and addition point on drop size distribution. Chem Eng Process, 2009;48:633–42.
  • Bahukudumbi P, Carson KH, Rice-Ficht AC, Andrews MJ. On the diameter and size distributions of bovine serum albumin (BSA)-based microspheres. J Microencapsul, 2004;21:787–803.
  • Baldyga J, Podgórska W. Drop break‐up in intermittent turbulence: Maximum stable and transient sizes of drops. Can J Chem Eng, 1998;76:456–70.
  • Berchane NS, Jebrail FF, Carson KH, Rice-Ficht AC, Andrews MJ. About mean diameter and size distributions of poly (lactide-co-glycolide) (PLG) microspheres. J Microencapsul, 2006;23:539–52.
  • Boxall JA, Koh CA, Sloan ED, Sum AK, Wu DT. Droplet size scaling of water-in-oil emulsions under turbulent flow. Langmuir, 2011;28:104–10.
  • Brauner N. 2003. Liquid-liquid two-phase flow systems. New York: Springer.
  • Calabrese R, Wang C, Bryner N. Drop breakup in turbulent stirred‐tank contactors. Part III: Correlations for mean size and drop size distribution. AIChE J, 1986;32:677–81.
  • Chan LW, White NJ, Pun SH. Synthetic strategies for engineering intravenous hemostats. Bioconjug Chem, 2015;26:1224–36.
  • Chen G, Tao D. An experimental study of stability of oil–water emulsion. Fuel Process Technol, 2005;86:499–508.
  • Desnoyer C, Masbernat O, Gourdon C. Experimental study of drop size distributions at high phase ratio in liquid–liquid dispersions. Chem Eng Sci, 2003;58:1353–63.
  • Dubey RR, Parikh RH. Two-stage optimization process for formulation of chitosan microspheres. AAPS PharmSciTech, 2004;5:20–8.
  • Efthimiadou EK, Metaxa AF, Kordas G. Modified polysaccharides for drug delivery. Polysaccharides: Bioact Biotechnol, 2015;1805–35.
  • Freiberg S, Zhu X. Polymer microspheres for controlled drug release. Int J Pharm, 2004;282:1–18.
  • Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: Reviewing the state of the art of microsphere preparation process technology. J Control Release, 2005;102:313–32.
  • Furukawa H, Kato Y, Inoue Y, Kato T, Tada Y, Hashimoto S. Correlation of power consumption for several kinds of mixing impellers. Int J Chem Eng, 2012;42:1–6.
  • Gabor F. Ketoprofen-poly(D,L-lactic-co-glycolic acid) microspheres: Influence of manufacturing parameters and type of polymer on the release characteristics. J Microencapsul, 1999;16:1–12.
  • González-Tello P, Camacho F, Vicaria J, González P. A modified Nukiyama–Tanasawa distribution function and a Rosin–Rammler model for the particle-size-distribution analysis. Powder Technol, 2008;186:278–81.
  • González‐Tello P, Camacho F, Vicaria J, González PA. Analysis of the mean diameters and particle‐size distribution in powders. Part Part Syst Charact, 2010;27:158–64.
  • Greenawalt KE, Gershkovich JB. 2000 Compositions comprising hemostatic compounds and bioabsorbable polymers. Google Patents.
  • Heinze T, Michealis N, Hornig S. Reactive polymeric nanoparticles based on unconventional dextran derivatives. Eur Polym J, 2007;43:697–703.
  • Heiskanen H, Denifl P, Hurme M, Pitkänen P. Effect of emulsification conditions on the properties of microspheres prepared by a solvent extraction process. Chem Eng Technol, 2010a;33:1635–44.
  • Heiskanen H, Denifl P, Hurme M, Pitkänen P. Novel preparation and properties of microspheres involving a hydrocarbon‐perfluorocarbon solvent extraction process. Chem Eng Technol, 2010b;33:682–91.
  • Heiskanen H, Denifl P, Hurme M, Pitkänen P, Oksman M. Effect of physical properties and emulsification conditions on the microsphere size prepared using a solvent extraction process. J Dispersion Sci Technol, 2012a;33:234–44.
  • Heiskanen H, Denifl P, Pitkänen P, Hurme M. Effect of preparation conditions on the properties of microspheres prepared using an emulsion-solvent extraction process. Chem Eng Res Des, 2012b;90:1517–26.
  • Hinze J. Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J, 1955;1:289–95.
  • Jahanzad F. Some comparative aspects of particle formation and rate of reaction in emulsion polymerization of vinyl acetate and butyl acrylate. J Appl Polym Sci, 2010;117:84–90.
  • Jahanzad F, Sajjadi S, Brooks BW. On the evolution of particle size average and size distribution in suspension polymerization processes. Macromol Symp, 2004;206:255–62.
  • Jahanzad F, Sajjadi S, Brooks BW. Characteristic intervals in suspension polymerisation reactors: An experimental and modelling study. Chem Eng Sci, 2005;60:5574–89.
  • Kato Y, Tada Y, Takeda Y, Hirai Y, Nagatsu Y. Correlation of power consumption for propeller and pfaudler type impellers. J Chem Eng Jpn, 2009;42:6–9.
  • Kenari HS, Alinejad Z, Imani M, Nodehi A. Effective parameters in determining cross-linked dextran microsphere characteristics: Screening by Plackett–Burman design-of-experiments. J Microencapsul, 2013a;30:599–611.
  • Kenari HS, Imani M, Nodehi A. Full factorial design‐of‐experiments for preparation of crosslinked dextran microspheres. J Appl Polym Sci, 2013b;127:3712–24.
  • Kolmogorov A. On the disintegration of drops in a turbulent flow. Dokl Akad Nauk SSSR, 1949.
  • Kostoglou M, Karabelas A. Toward a unified framework for the derivation of breakage functions based on the statistical theory of turbulence. Chem Eng Sci, 2005;60:6584–95.
  • Kotoulas C, Kiparissides C. A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors. Chem Eng Sci, 2006;61:332–46.
  • Kraume M. The development of stirring technology from an empirical art to science. Chem Biol Eng Rev, 2015;2:279–89.
  • Krstonošić V, Dokić L, Dokić P, Dapčević T. Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate. Food Hydrocolloids, 2009;23:2212–8.
  • Li M, Rouaud O, Poncelet D. Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int J Pharm, 2008;363:26–39.
  • Lovick J, Mouza A, Paras S, Lye G, Angeli P. Drop size distribution in highly concentrated liquid–liquid dispersions using a light back scattering method. J Chem Technol Biotechnol, 2005;80:545–52.
  • Lyddiatt A. Process chromatography: Current constraints and future options for the adsorptive recovery of bioproducts. Curr Opin Biotechnol, 2002;13:95–103.
  • Macías-García A, Cuerda-Correa EM, DÍaz-DÍez MA. Application of the Rosin–Rammler and Gates–Gaudin–Schuhmann models to the particle size distribution analysis of agglomerated cork. Mater Charact, 2004;52:159–64.
  • Maggioris D, Goulas A, Alexopoulos AH, Chatzi EG, Kiparissides C. Prediction of particle size distribution in suspension polymerization reactors: Effect of turbulence nonhomogeneity. Chem Eng Sci, 2000;55:4611–27.
  • Martin N, Sinko PJ. 2011. Martin's physical pharmacy and pharmaceutical sciences. Philadelphia: Kluwer/Lippincott Williams & Wilkins.
  • Mateovic T, Ratnik M, Bogataj M, Mrhar A. Determination of microsphere solidification time in the solvent evaporation process. J Microencapsul, 2005;22:81–90.
  • McCarthy SJ. 2015. Hemostatic compositions, assemblies, systems, and methods employing particulate hemostatic agents formed from hydrophilic polymer foam such as chitosan. Google Patents.
  • Middleman S. Drop size distributions produced by turbulent pipe flow of immiscible fluids through a static mixer. Ind Eng Chem Process Des Dev, 1974;13:78–83.
  • Mu Y, Lyddiatt A, Pacek A. Manufacture by water/oil emulsification of porous agarose beads: Effect of processing conditions on mean particle size, size distribution and mechanical properties. Chem Eng Process, 2005;44:1157–66.
  • Nienow A. On impeller circulation and mixing effectiveness in the turbulent flow regime. Chem Eng Sci, 1997;52:2557–65.
  • Oh JK, Lee DI, Park JM. Biopolymer-based microgels/nanogels for drug delivery applications. Prog Polym Sci, 2009;34:1261–82.
  • Pacek A, Chamsart S, Nienow A, Bakker A. The influence of impeller type on mean drop size and drop size distribution in an agitated vessel. Chem Eng Sci, 1999;54:4211–22.
  • Pacek A, Ding P, Nienow AW. The effect of volume fraction and impeller speed on the structure and drop size in aqueous/aqueous dispersions. Chem Eng Sci, 2001;56:3247–55.
  • Pacek A, Man C, Nienow A. On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel. Chem Eng Sci, 1998;53:2005–11.
  • Pascal F, Olivier S, Philippe V. Monte-Carlo simulation of colliding particles or coalescing droplets transported by a turbulent flow in the framework of a joint fluid-particle pdf approach. Int J Multiphase Flow, 2015;74:165–83.
  • Paul EL, Atiemo-Obeng VA, Kresta SM. 2004. Handbook of industrial mixing: Science and practice. New York: John Wiley & Sons.
  • Qi L, Meng X, Zhang R, Liu H, Xu C, Liu Z, Klusener PA. Droplet size distribution and droplet size correlation of chloroaluminate ionic liquid–heptane dispersion in a stirred vessel. Chem Eng J, 2015;268:116–24.
  • Razzaghi K, Shahraki F. On the effect of phase fraction on drop size distribution of liquid–liquid dispersions in agitated vessels. Chem Eng Res Des, 2010;88:803–8.
  • Rushton J, Costich E, Everett H. Power characteristics of mixing impellers. Chem Eng Prog, 1950;46:395–404.
  • Samani MG, Safdari J, Asl AH, Torab‐Mostaedi M. Effect of structural parameters on drop size distribution in pulsed packed columns. Chem Eng Technol, 2014;37:1155–62.
  • Saralidze K, Koole LH, Knetsch ML. Polymeric microspheres for medical applications. Materials, 2010;3:3537–64.
  • Seyednejad H, Imani M, Jamieson T, Seifalian AM. Topical haemostatic agents. Br J Surg, 2008;95:1197–225.
  • Shinnar R, Church JM. Statistical theories of turbulence in predicting particle size in agitated dispersions. Ind Eng Chem, 1960;52:253–6.
  • Singh K, Mahajani S, Shenoy K, Ghosh S. Representative drop sizes and drop size distributions in A/O dispersions in continuous flow stirred tank. Hydrometallurgy, 2008;90:121–36.
  • Sprow F. Distribution of drop sizes produced in turbulent liquid—liquid dispersion. Chem Eng Sci, 1967;22:435–42.
  • Tamber H, Johansen P, Merkle HP, Gander B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Adv Drug Deliv Rev, 2005;57:357–76.
  • Tamburini A, Cipollina A, Micale G, Brucato A. Particle distribution in dilute solid liquid unbaffled tanks via a novel laser sheet and image analysis based technique. Chem Eng Sci, 2013;87:341–58.
  • Vonka M, Soos M. Characterization of liquid‐liquid dispersions with variable viscosity by coupled computational fluid dynamics and population balances. AIChE J, 2015;61:2403–14.
  • Wang W, Cheng W, Duan J, Gong J, Hu B, Angeli P. Effect of dispersed holdup on drop size distribution in oil–water dispersions: Experimental observations and population balance modeling. Chem Eng Sci, 2014;105:22–31.
  • Wen Y, Oh JK. Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications. Macromol Rapid Commun, 2014;35:1819–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.