301
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Characterisation and in vitro antimicrobial activity of biosynthetic silver-loaded bacterial cellulose hydrogels

, , , , &
Pages 725-734 | Received 18 Jul 2016, Accepted 17 Oct 2016, Published online: 28 Nov 2016

References

  • Abdelrahman T, Newton H. Wound dressings: Principles and practices. Surgery, 2011;29(10):491–5.
  • Abeer MM, Amin MCIM, Martin C. A review of bacterial cellulose-based drug delivery systems: Its’ biochemistry, current approaches and future prospects. J Pharm Pharmacol, 2014;66(8):1047–61.
  • Atiyeh BS, Costagliola M, Hayek SN, Dibo SA. Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 2007;33(2):139–48.
  • Barud HS, Assunção RMN, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL. Bacterial cellulose–silica organic–inorganic hybrids. J Sol–Gel Sci Technol, 2008;46(3):363–7.
  • Bomberger JM, MacEachran DP, Coutermarsh BA, Ye S, O'Toole GA, Stanton BA. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog, 2009;5(4):e1000382 [online] Available at: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1000382.
  • Brett DW. A discussion of silver as an antimicrobial agent: Alleviating the confusion. Ostomy/Wound Manage, 2006;52(1):34–41.
  • Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ, Payne WG, Smith DJ, Robson MC. Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J, 2007;4(2):114–22.
  • Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Ganán P. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym, 2011;84(1):96–102.
  • Chopra I. The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? J Antimicrob Chemother, 2007;59(4):587–90.
  • Copcia VE, Luchian C, Dunca S, Bilba N, Hristodor CM. Antibacterial activity of silver-modified natural clinoptilolite. J Mater Sci, 2011;46(22):7121–8.
  • Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci, 2001;13(2):123–33.
  • Czaja W, Krystynowicz A, Bielecki S, Brown MB. Microbial cellulose – the natural power to heal wounds. Biomaterials, 2006;27(2):145–51.
  • Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. Drug Res, 2010;67(3):217–23.
  • El-Shishtawy RM, Asiri AM, Abdelwahed NA, Al-Otaibi MM. In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose, 2011;18(1):75–82.
  • Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym, 2013;92(2):1432–42.
  • Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res, 2010;89(3):219–29.
  • Hanim SAM, Malek NANN, Ibrahim Z. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity. Appl Surf Sci, 2016;360(Part A):121–30.
  • Hestrin S, Schramm M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J, 1954;58(2):345–52.
  • Ip M, Lui SL, Poon VK, Lung I, Burd A. Antimicrobial activities of silver dressings: An in vitro comparison. J Med Microbiol, 2006;55(Pt 1):59–63.
  • Jadhav H, Joshi A, Misra M, Shahiwala A. Effects of various formulation parameters on the properties of hydrogel wound dressings. Drug Deliv Lett, 2012;2(1):8–13.
  • Kamoun EA, Chen X, Eldin MSM, Kenawy E-R. Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab J Chem, 2015;8(1):1–14.
  • Karimi-Shamsabadi M, Nezamzadeh-Ejhieh A. Comparative study on the increased photoactivity of coupled and supported manganese-silver oxides onto a natural zeolite nano-particles. J Mol Catal A: Chem, 2016;418–419:103–14.
  • Kim J, Kwon S, Ostler E. Antimicrobial effect of silver-impregnated cellulose: Potential for antimicrobial therapy. J Biol Eng, 2009;3(20) [online] doi:10.1186/1754-1611-3-20. Available at: http://www.jbioleng.org/content/3/1/20.
  • Kim PS, Kim MK, Cho BK, Nam IS, Oh SH. Effect of H2 on deNOx performance of HC-SCR over Ag/Al2O3: Morphological, chemical, and kinetic changes. J Catal, 2013;301:65–76.
  • Kirketerp-Møller K, Jensen PO, Fazli M, Madsen KG, Pedersen J, Moser C, Tolker-Nielsen T, Høiby N, Givskov M, Bjarnsholt T. Distribution, organization and ecology of bacteria in chronic wound. J Clin Microbiol, 2008;46(8):2717–22.
  • Kokabi M, Sirousazar M, Hassan ZM. PVA–clay nanocomposite hydrogels for wound dressing. Eur Polym J, 2007;43(3):773–81.
  • Kwakye-Awuah B, Wemegah DD, Nkrumah I, Williams C, Radecka I. Antimicrobial activity of silver-zeolite LTA on heavily-contaminated underground Ghanaian waters. Int J Sci Res, 2013;2(11):26–31.
  • Kwakye-Awuah B, Williams C, Kenward MA, Radecka I. Antimicrobial action and efficiency of silver-loaded zeolite X. J Appl Microbiol, 2008;104(5):1516–24.
  • Landis SJ. Chronic wound infection and antimicrobial use. Adv Skin Wound Care, 2008;21(11):531–40.
  • Le AT, Tam LT, Tam PD, Huy PT, Huy TQ, Hieu NV, Kudrinskiy AA, Krutyakov YA. Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Mater Sci Eng: C, 2010;30(6):910–16.
  • Leaper D. Appropriate use of silver dressings in wounds: International consensus document. Int Wound J, 2012;9(5):461–4.
  • Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym, 2013;94(1):603–11.
  • Low WL, Martin C, Hill DJ, Kenward MA. Antimicrobial efficacy of silver ions in combination with tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Int J Antimicrob Agents, 2011;37(2):162–5.
  • Low WL, Martin C, Hill DJ, Kenward MA. Antimicrobial efficacy of liposome encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Lett Appl Microbiol, 2013;57(1):33–9.
  • Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial dressing. Carbohydr Polym, 2008;72(1):43–51.
  • Martin C, Low WL, Amin MCIM, Radecka I, Raj P, Kenward MA. Current trends in the development of wound dressings, biomaterials and devices. Pharm Patent Anal, 2013;2(3):341–59.
  • Martin C, Low WL, Gupta A, Amin MCIM, Radecka I, Britland ST, Raj P, Kenward MA. 2014. Liposomal delivery of antimicrobials. In: Finney L, ed. Advances in liposome research (part of the Biochemistry Research Trends Series). New York, USA: Nova Science Publishers Inc., pp. 27–62.
  • Martin C, Low WL, Gupta A, Amin MCIM, Radecka I, Britland ST, Raj P, Kenward MA. Strategies for antimicrobial drug delivery to biofilm. Curr Pharm Des, 2015;21(1):43–66.
  • Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol, 2003;69(7):4278–81.
  • Murphy PS, Evans GRD. Advances in wound healing: A review of current wound healing products. Plast Surg Int, 2012;2012: Article ID 190436, doi:10.1155/2012/190436.
  • Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S. High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater, 2004;14(11):1124–8.
  • Neuhaus FC, Baddiley J. A continuum of anionic charge: Structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev, 2003;67(4):686–723.
  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res, 2005;340(15):2376–91.
  • Ovington LG. Advances in wound dressings. Clin Dermatol, 2007;25(1):33–8.
  • Peršin Z, Maver U, Pivec T, Maver T, Vesel A, Mozetič M, Stana-Kleinschek K. Novel cellulose based materials for safe and efficient wound treatment. Carbohydr Polym, 2014;100:55–64.
  • Pinto RJ, Marques PA, Neto CP, Trindade T, Daina S, Sadocco P. Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater, 2009;5(6):2279–89.
  • Radecka I, Martin C, Hill DJ. 2015. The problem of microbial drug resistance. In: Phoenix DA, Harris F, Dennison SR, eds. Novel antimicrobial agents and strategies. Weinheim, Germany: Wiley-VCH, pp. 1–16.
  • Salim MM, Malek NANN. Characterization and antibacterial activity of silver exchanged regenerated NaY zeolite from surfactant-modified NaY zeolite. Mater Sci Eng: C, 2016;59:70–7.
  • Sannino A, Demitri C, Madaghiele M. Biodegradable cellulose-based hydrogels: Design and applications. Materials, 2009;2(2):353–73.
  • Shah N, Ul-Islam M, Khattak WA, Park JK. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr Polym, 2013;98(2):1585–98.
  • Shameli K, Ahmad MB, Zargar M, Yunus WMZW, Ibrahim NA. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity. Int J Nanomed, 2011;6:331–41.
  • Singh B, Sharma S, Dhiman A. Design of antibiotic hydrogel wound dressing: Biomedical properties and histological study of wound healing. Int J Pharm, 2013;457(1):82–91.
  • Solway DR, Fapwca F, Consalter M, Levinson DJ. Microbial cellulose wound dressing in the treatment of skin tears in the frail elderly. Wounds, 2010;22(1):17–19.
  • Sperandeo P, Dehò G, Polissi A. The lipopolysaccharide transport system of Gram-negative bacteria. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids, 2009;1791(7):594–602.
  • Valverde-Aguilar G, García-Macedo JA, Rentería-Tapia VM, Gómez RW, Quintana-García M. Modelling of optical absorption of silver NP’s produced by UV radiation embedded in mesostructured silica films. J Nanopart Res, 2011;13(10):4613–22.
  • Waghmare SR, Mustopa NM, Suryakant RM, Kailas DS. Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech, 2015;5(1):33–8.
  • Waterhouse GI, Bowmaker GA, Metson JB. The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study. Phys Chem Chem Phys, 2001;3(17):3838–45.
  • Wei B, Yang G, Hong F. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym, 2011;84(1):533–8.
  • Wilkinson LJ, White RJ, Chipman JK. Silver and nanoparticles of silver in wound dressings: A review of efficacy and safety. J Wound Care, 2011;20(11):543–9.
  • Winter GD. Formation of the scab and rate of epithelialization of superficial wounds in the skin of the young domestic pig. Nature, 1962;193:293–4.
  • Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym, 2014;102:762–71.
  • Yang G, Xie J, Hong F, Cao Z, Yang X. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon source of bacterial cellulose. Carbohydr Polym, 2012;87(1):839–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.