187
Views
4
CrossRef citations to date
0
Altmetric
Research Article

BCG-loaded chitosan microparticles: interaction with macrophages and preliminary in vivo studies

ORCID Icon, , &
Pages 203-217 | Received 31 Jan 2017, Accepted 03 Apr 2017, Published online: 19 Apr 2017

References

  • Abebe F, Bjune G. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clin Exp Immunol, 2009;157(2):235–43.
  • Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. Targeting to macrophages: Role of physicochemical properties of particulate carriers: liposomes and microspheres on the phagocytosis by macrophages. J Control Release, 2002;79(1–3):29–40.
  • Aldwell FE, Cross ML, Fitzpatrick CE, Lambeth MR, de Lisle GW, Buddle BM. Oral delivery of lipid-encapsulated Mycobacterium bovis BCG extends survival of the bacillus in vivo and induces a long-term protective immune response against tuberculosis. Vaccine, 2006;24(12):2071–8.
  • Aldwell FE, Keen DL, Parlane NA, Skinner MA, de Lisle GW, Buddle BM. Oral vaccination with Mycobacterium bovis BCG in a lipid formulation induces resistance to pulmonary tuberculosis in brushtail possums. Vaccine, 2003;22(1):70–6.
  • Almeida AJ, Alpar HO. Nasal delivery of vaccines. J Drug Target, 1996;3(6):455–67.
  • Almeida AJ, Alpar HO, Brown M. Immune response to nasal delivery of antigenically intact tetanus toxoid associated with poly(l-lactic acid) microspheres in rats, rabbits and Guinea-pigs. J Pharm Pharmacol, 1993;45(3):198–203.
  • Almeida AJ, Florindo HF. 2012. Nanocarriers overcoming the nasal barriers: Physiological considerations and mechanistic issues. In: Alonso MJ, Csaba NS, eds. Nanostructured biomaterials for overcoming biological barriers. Wakefield, United Kingdom: The Charlesworth Group, pp. 117–33.
  • Amidi M, Mastrobattista E, Jiskoot W, Hennink WE. Chitosan-based delivery systems for protein therapeutics and antigens. Adv Drug Deliv Rev, 2010;62(1):59–82.
  • Arenas-Gamboa AM, Ficht TA, Kahl-McDonagh MM, Rice-Ficht AC. Immunization with a single dose of a microencapsulated Brucella melitensis mutant enhances protection against wild-type challenge. Infect Immun, 2008;76(6):2448–55.
  • Bachmann MF, Jennings GT. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol, 2010;10(11):787–96.
  • Bacon A, Makin J, Sizer PJ, Jabbal-Gill I, Hinchcliffe M, Illum L, Chatfield S, Roberts M. Carbohydrate biopolymers enhance antibody responses to mucosally delivered vaccine antigens. Infect Immun, 2000;68(10):5764–70.
  • Baudner BC, Giuliani MM, Verhoef JC, Rappuoli R, Junginger HE, Giudice GD. The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. Vaccine, 2003;21(25–26):3837–44.
  • Bettencourt P, Pires N, Carmo N, Anes E. 2010. Application of confocal microscopy for quantification of intracellular mycobacteria in macrophages. In: Méndez-Vilas A, Díaz J, eds. Microscopy: Science, technology, applications and education. pp. 614–21.
  • Bhatt K, Salgame P. Host innate immune response to Mycobacterium tuberculosis. J Clin Immunol, 2007;27(4):347–62.
  • Borges O. 2007. Alginate coated chitosan nanoparticles as adjuvant for mucosal vaccination with hepatitis B antigen. Coimbra: Coimbra University.
  • Borges O, Cordeiro-da-Silva A, Tavares J, Santarém N, de Sousa A, Borchard G, Junginger HE. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. Eur J Pharm Biopharm, 2008;69(2):405–16.
  • Borges O, Silva M, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A. Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. Int Immunopharmacol, 2008;8(13–14):1773–80.
  • Brandhonneur N, Chevanne F, Vié V, Frisch B, Primault R, Le Potier MF, Le Corre P. Specific and non-specific phagocytosis of ligand-grafted PLGA microspheres by macrophages. Eur J Pharm Sci, 2009;36(4–5):474–85.
  • Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine, 2007;25(30):5467–84.
  • Cadete A, Figueiredo L, Lopes R, Calado CC, Almeida AJ, Gonçalves LM. Development and characterization of a new plasmid delivery system based on chitosan-sodium deoxycholate nanoparticles. Eur J Pharm Sci, 2012;45(4):451–8.
  • Caetano LA, Almeida AJ, Gonçalves LMD. Effect of experimental parameters on alginate/chitosan microparticles for BCG encapsulation. Mar Drugs, 2016;14(5):90.
  • Caetano LA, Amaral R, Figueiredo L. Chitosan–alginate microparticulate delivery system for an alternative route of administration of BCG vaccine. In Bioeng (ENBENG), 2013 IEEE 3rd Port Meet, 2013;1–3.
  • Cannon GJ, Swanson JA. The macrophage capacity for phagocytosis. J Cell Sci, 1992;101:907–13.
  • Cevher E, Salomon SK, Makrakis A, Li XW, Brocchini S, Alpar HO. Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: Optimisation and cellular studies. J Microencapsul, 2015;32(8):755–68.
  • Champion J, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res, 2008;25(8):1815–21.
  • Clark S, Cross ML, Smith A, Court P, Vipond J, Nadian A, Hewinson RG, Batchelor HK, Perrie Y, Williams A, et al. Assessment of different formulations of oral Mycobacterium bovis Bacille Calmette–Guérin (BCG) vaccine in rodent models for immunogenicity and protection against aerosol challenge with M. bovis. Vaccine, 2008;26(46):5791–7.
  • Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol, 2009;27:393–422.
  • Corthésy B. Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol, 2010;5(5):817–29.
  • Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int J Pharm, 1999;182(1):21–32.
  • Dorer DE, Czepluch W, Lambeth MR, Dunn AC, Reitinger C, Aldwell FE, McLellan AD. Lymphatic tracing and T cell responses following oral vaccination with live Mycobacterium bovis (BCG). Cell Microbiol, 2007;9(2):544–53.
  • Esquisabel A, Hernandez RM, Igartua M, Gascón AR, Calvo B, Pedraz JL. Preparation and stability of agarose microcapsules containing BCG. J Microencapsul, 2002;19(2):237–44.
  • European Medicines Agency, 1997. Note for guidance on preclinical pharmacological and toxicological testing of vaccines.
  • Figueiredo L, Cadete A, Gonçalves LM, Corvo ML, Almeida AJ. Intranasal immunisation of mice against Streptococcus equi using positively charged nanoparticulate carrier systems. Vaccine, 2012;30(46):6551–8.
  • Figueiredo L, Calado CCR, Almeida AJ. Protein and DNA nanoparticulate multiantigenic vaccines against H. pylori: In vivo evaluation. In Bioeng (ENBENG), 2012 IEEE 2nd Port Meet, 2012;1.
  • Florindo HF, Pandit S, Gonçalves LM, Alpar HO, Almeida AJ. New approach on the development of a mucosal vaccine against strangles: Systemic and mucosal immune responses in a mouse model. Vaccine, 2009;27(8):1230–41.
  • Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm, 2005;298(2):315–22.
  • Forbes EK, Sander C, Ronan EO, McShane H, Hill AV, Beverley PC, Tchilian EZ. Multifunctional, high level cytoquine producing Th1 cells in the lung, but not spleen, correlate with protection against Mycobacterium tuberculosis aerosol challenge in mice. J Immunol, 2008;181:4955–64.
  • Gerdts V, Littel-van den Hurk Sv, Griebel PJ, Babiuk LA. Use of animal models in the development of human vaccines. Future Microbiol, 2007;2(6):667–75.
  • Igietseme JU, Eko FO, He Q, Black CM. Antibody regulation of Tcell immunity: Implications for vaccine strategies against intracellular pathogens. Expert Rev Vaccines, 2003;3(1):23–34.
  • Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev, 2001;51(1–3):81–96.
  • Jabbal-Gill I, Watts P, Smith A. Chitosan-based delivery systems for mucosal vaccines. Expert Opin Drug Deliv, 2012;9(9):1051–67.
  • Jordao L, Bleck CK, Mayorga L, Griffiths G, Anes E. On the killing of mycobacteria by macrophages. Cell Microbiol, 2008;10(2):529–48.
  • Källenius G, Pawlowski A, Brandtzaeg P, Svenson S. Should a new tuberculosis vaccine be administered intranasally? Tuberculosis (Edinb), 2007;87(4):257–66.
  • Kaufmann SH. Future vaccination strategies against tuberculosis: Thinking outside the box. Immunity, 2010;33(4):567–77.
  • Kaufmann SH, Hess J. Immune response against Mycobacterium tuberculosis: Implications for vaccine development. J Biotechnol, 2000;83(1–2):13–17.
  • Kaufmann SH, Hussey G, Lambert P-H. New vaccines for tuberculosis. The Lancet, 2010;375(9731):2110–19.
  • Kaveh DA, Carmen Garcia-Pelayo M, Hogarth PJ. Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis. Vaccine, 2014;32(51):6911–18.
  • Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci, 2011;11(6):748–64.
  • Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev, 2009;61(2):158–71.
  • Leithner K, Bernkop-Schnürch A. 2012. Chitosan and derivatives for biopharmaceutical use: Mucoadhesive properties. In: Sarmento B, Neves J, eds. Chitosan-based systems for biopharmaceuticals. West Sussex, United Kingdom: John Wiley & Sons, Ltd, pp. 159–80.
  • Moghimi SM, Parhamifar L, Ahmadvand D, Wibroe PP, Andresen TL, Farhangrazi ZS, Hunter AC. Particulate systems for targeting of macrophages: Basic and therapeutic concepts. J Innate Immun, 2012;4(5–6):509–28.
  • Mohanan D, Slütter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y, Kündig TM, Gander B, Johansen P. Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems. J Control Release, 2010;147(3):342–9.
  • Olsen AW, Brandt L, Agger EM, van Pinxteren LA, Andersen P. The influence of remaining live BCG organisms in vaccinated mice on the maintenance of immunity to tuberculosis. Scand J Immunol, 2004;60(3):273–7.
  • Pavot V, Rochereau N, Genin C, Verrier B, Paul S. New insights in mucosal vaccine development. Vaccine, 2012;30(2):142–54.
  • Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta, 2003;396(1–2):153–66.
  • Pirouzmand H, Khameneh B, Tafaghodi M. Immunoadjuvant potential of cross-linked dextran microspheres mixed with chitosan nanospheres encapsulated with tetanus toxoid. Pharm Biol, 2017;55(1):212–17.
  • Porporatto C, Bianco ID, Correa SG. Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. J Leukoc Biol, 2005;78(1):62–9.
  • Read RC, Naylor SC, Potter CW, Bond J, Jabbal-Gill I, Fisher A, Illum L, Jennings R. Effective nasal influenza vaccine delivery using chitosan. Vaccine, 2005;23(35):4367–74.
  • Reljic R, Williams A, Ivanyi J. Mucosal immunotherapy of tuberculosis: Is there a value in passive IgA? Tuberculosis (Edinb), 2006;86(3–4):179–90.
  • Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA. Polymeric particles in vaccine delivery. Curr Opin Microbiol, 2010;13(1):106–12.
  • Rodrigues MA, Figueiredo L, Padrela L, Cadete A, Tiago J, Matos HA, Gomes de Azevedo E, Florindo HF, Gonçalves LM, Almeida AJ. Development of a novel mucosal vaccine against strangles by supercritical enhanced atomization spray-drying of Streptococcus equi extracts and evaluation in a mouse model. Eur J Pharm Biopharm, 2012;82(2):392–400.
  • Sarmento B, Ferreira D, Veiga F, Ribeiro A. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym, 2006;66(1):1–7.
  • Sarmento B, das Neves J, eds. 2012. Chitosan-based systems for biopharmaceuticals: Delivery, targeting and polymer therapeutics, 1st edn. West Sussex, United Kingdom: John Wiley & Sons, Ltd.
  • Simsek-Ege FA, Bond GM, Stringer J. Polyelectrolye complex formation between alginate and Chitosan as a function of pH. J Appl Polym Sci, 2003;88(2):346–51.
  • Slütter B, Hagenaars N, Jiskoot W. Rational design of nasal vaccines. J Drug Target, 2008;16(1):1–17.
  • Szymańska E, Winnicka K. Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar Drugs, 2015;13(4):1819–46.
  • Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP, Walter E. Evaluation of particle uptake in human blood monocyte-derived cells in vitro. Does phagocytosis activity of dendritic cells measure up with macrophages? J Control Release, 2001;76(1–2):59–71.
  • Vajdy M, O’Hagan DT. Microparticles for intranasal immunization. Adv Drug Deliv Rev, 2001;51(1–3):127–41.
  • Vicente S, Diaz-Freitas B, Peleteiro M, Sanchez A, Pascual DW, Gonzalez-Fernandez A, Alonso MJ. A polymer/oil based nanovaccine as a single-dose immunization approach. PLoS One, 2013;8(4):e62500.
  • Vila A, Sánchez A, Evora C, Soriano I, McCallion O, Alonso MJ. PLA-PEG particles as nasal protein carriers: The influence of the particle size. Int J Pharm, 2005;292:43–52.
  • WHO 2011/2012 Tuberculosis Global Facts Factsheet. Geneva: World Health Organization, 2012.
  • WHO guidelines on the nonclinical evaluation of vaccine adjuvants and adjuvanted vaccines. WHO Expert Committee on Biological Standardization. Geneva: World Health Organization, 2014.
  • Woodrow KA, Bennett KM, Lo DD. Mucosal vaccine design and delivery. Annu Rev Biomed Eng, 2012;14:17–46.
  • Xing Z. Importance of T-cell location rekindled: Implication for tuberculosis vaccination strategies. Expert Rev Vaccines, 2009;8(11):1465–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.