199
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Modified dextran, heparin-based triggered release microspheres for cardiovascular delivery of therapeutic drugs using protamine as a stimulus

&
Pages 299-307 | Received 29 Nov 2016, Accepted 21 Apr 2017, Published online: 10 May 2017

References

  • Absar S, Nahar K, Kwon YM, Ahsan F. Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy. Pharm Res, 2013;30:1663–76.
  • Ainle FN, Preston RJS, Jenkins PV, Nel HJ, Johnson JA, Smith OP, White B, Fallon PG, O’donnell JS. Protamine sulfate down-regulates thrombin generation by inhibiting factor V activation. Blood, 2009;114:1658–65.
  • Azzam T, Eliyahu H, Shapira L, Linial M, Barenholz Y, Domb AJ. Polysaccharide-oligoamine based conjugates for gene delivery. J Med Chem, 2002a;45:1817–24.
  • Azzam T, Raskin A, Makovitzki A, Brem H, Vierling P, Lineal M, Domb AJ. Cationic polysaccharides for gene delivery. Macromolecules, 2002b;35:9947–53.
  • Bachelder EM, Beaudette TT, Broaders KE, Dashe J, Frechet JMJ. Acetal-derivatized dextran: An acid-responsive biodegradable material for therapeutic applications. J Am Chem Soc, 2008;130:10494–5.
  • Baglin T, Barrowcliffe TW, Cohen A, Greaves M, British Comm Stand H. Guidelines on the use and monitoring of heparin. Br J Haematol, 2006;133:19–34.
  • Becker M, Lorenz S, Strand D, Vahl CF, Gabriel M. Covalent grafting of the RGD-peptide onto polyetheretherketone surfaces via Schiff base formation. Scientific World J, 2013;2013:616535.
  • Blinc A, Francis CW. Transport processes in fibrinolysis and fibrinolytic therapy. Thromb Haemost, 1996;76:481–91.
  • Broaders KE, Cohen JA, Beaudette TT, Bachelder EM, Frechet JMJ. Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy. Proc Natl Acad Sci USA, 2009;106:5497–502.
  • Byun Y, Singh VK, Yang VC. Low molecular weight protamine: A potential nontoxic heparin antagonist. Thromb Res, 1999;94:53–61.
  • Carr JA, Silverman N. The heparin-protamine interaction. A review. J Cardiovasc Surg (Torino), 1999;40:659–66.
  • Cheng YX, Hao J, Lee LA, Biewer MC, Wang Q, Stefan MC. Thermally controlled release of anticancer drug from self-assembled gamma-substituted amphiphilic poly(epsilon-caprolactone) micellar nanoparticles. Biomacromolecules, 2012;13:2163–73.
  • Chung TW, Wang SS, Tsai WJ. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Biomaterials, 2008;29:228–37.
  • Cohen JL, Schubert S, Wich PR, Cui L, Cohen JA, Mynar JL, Frechet JMJ. Acid-degradable cationic dextran particles for the delivery of siRNA therapeutics. Bioconjugate Chem, 2011;22:1056–65.
  • Deng WW, Cao X, Wang M, Yang Y, Su WY, Wei YW, Zhen OY, Yu JN, Xu XM. Efficient gene delivery to mesenchymal stem cells by an ethylenediamine-modified polysaccharide from mulberry leaves. Small, 2012;8:441–51.
  • Doner LW, Irwin PL. Assay of reducing end-groups in oligosaccharide homologues with 2,2'-bicinchoninate. Anal Biochem, 1992;202:50–3.
  • Giorgini MG, Pelletti MR, Paliani G, Cataliotti RS. Vibrational-spectra and assignments of ethylene-diamine and its deuterated derivatives. J Raman Spectrosc, 1983;14:16–21.
  • Heinze T, Liebert T, Heublein B, Hornig S. Functional polymers based on dextran. In Klemm D, ed. Polysaccharides II. Berlin: Springer Heidelberg, 2006:199–291.
  • Hu SH, Tsai CH, Liao CF, Liu DM, Chen SY. Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery. Langmuir, 2008;24:11811–8.
  • Huang YZ, Park YS, Wang JX, Moon C, Kwon YM, Chung HS, Park YJ, Yang VC. ATTEMPTS system: A macromolecular prodrug strategy for cancer drug delivery. Curr Pharm Des, 2010;16:2369–76.
  • Jin HQ, Tan H, Zhao LL, Sun WP, Zhu LJ, Sun YG, Hao HJ, Xing HY, Liu LL, Qu XZ, et al. Ultrasound-triggered thrombolysis using urokinase-loaded nanogels. Int J Pharm, 2012;434:384–90.
  • Kalaska B, Kaminski K, Sokolowska E, Czaplicki D, Kujdowicz M, Stalinska K, Bereta J, Szczubialka K, Pawlak D, Nowakowska M, Mogielnicki A. Nonclinical evaluation of novel cationically modified polysaccharide antidotes for unfractionated heparin. PLoS One, 2015;10:21.
  • Kalaska B, Sokolowska E, Kaminski K, Szczubialka K, Kramkowski K, Mogielnicki A, Nowakowska M, Buczko W. Cationic derivative of dextran reverses anticoagulant activity of unfractionated heparin in animal models of arterial and venous thrombosis. Eur J Pharmacol, 2012;686:81–9.
  • Kaminski K, Plonka M, Ciejka J, Szczubialka K, Nowakowska M, Lorkowska B, Korbut R, Lach R. Cationic derivatives of dextran and hydroxypropylcellulose as novel potential heparin antagonists. J Med Chem, 2011;54:6586–96.
  • Kauffman KJ, Do C, Sharma S, Gallovic MD, Bachelder EM, Ainslie KM. Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product. ACS Appl Mater Interfaces, 2012;4:4149–55.
  • Leach JK, Patterson E, O’Rear EA. Distributed intraclot thrombolysis: Mechanism of accelerated thrombolysis with encapsulated plasminogen activators. J Thromb Haemost, 2004;2:1548–55.
  • Lever R, Page CR. Novel drug development opportunities for heparin. Nat Rev Drug Discovery, 2002;1:140–8.
  • Liang JF, Park YJ, Song H, Li YT, Yang VCM. ATTEMPTS: A heparin/protamine-based prodrug approach for delivery of thrombolytic drugs. J Control Release, 2001;72:145–56.
  • Liang YK, Kiick KL. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater, 2014;10:1588–600.
  • Lippi G, Mattiuzzi C, Favaloro EJ. Novel and emerging therapies: Thrombus-targeted fibrinolysis. Semin Thromb Hemost, 2013;39:48–58.
  • Nguyen HX, O’Rear EA. Biphasic release of protein from polyethylene glycol and polyethylene glycol/modified dextran microspheres. J Biomed Mater Res A, 2013;101:2699–705.
  • Panyam J, Dali MA, Sahoo SK, Ma WX, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J Control Release, 2003;92:173–87.
  • Park TH, Eyster TW, Lumley JM, Hwang S, Lee KJ, Misra A, Rahmani S, Lahann J. Photoswitchable particles for on-demand degradation and triggered release. Small, 2013;9:3051–7.
  • Park YJ, Liang JF, Song H, Li YT, Naik S, Yang VC. ATTEMPTS: A heparin/protamine-based triggered release system for the delivery of enzyme drugs without associated side-effects. Adv Drug Deliv Rev, 2003;55:251–65.
  • Rastogi A, Luo ZQ, Wu ZJ, Ho PS, Bowman PD, Stavchansky S. Development and characterization of a scalable microperforated device capable of long-term zero order drug release. Biomed Microdevices, 2010;12:915–21.
  • Reyes-Ortega F, Rodriguez G, Aguilar MR, Lord M, Whitelock J, Stenzel MH, San Roman J. Encapsulation of low molecular weight heparin (bemiparin) into polymeric nanoparticles obtained from cationic block copolymers: Properties and cell activity. J Mater Chem B, 2013;1:850–60.
  • Safarik I, Safarikova M. Detection of low concentrations of malachite green and crystal violet in water. Water Res, 2002;36:196–200.
  • Saito T, Tabata Y. Preparation of gelatin hydrogels incorporating low-molecular-weight heparin for anti-fibrotic therapy. Acta Biomater, 2012;8:646–52.
  • Shenoi RA, Kalathottukaren MT, Travers RJ, Lai BFL, Creagh AL, Lange D, Yu K, Weinhart M, Chew BH, Du CG, et al. Affinity-based design of a synthetic universal reversal agent for heparin anticoagulants. Sci Transl Med, 2014;6:14.
  • Suarez S, Grover GN, Braden RL, Christman KL, Amutairi A. Tunable protein release from acetalated dextran microparticles: A platform for delivery of protein therapeutics to the heart post-MI. Biomacromolecules, 2013;14:3927–35.
  • Tang DW, Yu SH, Ho YC, Mi FL, Kuo PL, Sung HW. Heparinized chitosan/poly(gamma-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials, 2010;31:9320–32.
  • Thummala AS, Leach JK, Patterson E, O’Rear EA. Effect of encapsulation on plasminogen activator delivery to the microcirculation and its implications for bleeding. Clin Hemorheol Micro, 2016;68:373–9.
  • Vaidya B, Nayak MK, Dash D, Agrawal GP, Vyas SP. Development and characterization of site specific target sensitive liposomes for the delivery of thrombolytic agents. Int J Pharm, 2011;403:254–61.
  • Wang SS, Chou NK, Chung TW. The tPA-encapsulated PLGA nanoparticles shelled with CS or CS-GRGD alter both permeation through and dissolving patterns of blood clots compared with t-PA solution: An in vitro thrombolysis study. J Biomed Mater Res Part A, 2009;91A:753–61.
  • Wu JH, Siddiqui K, Diamond SL. Transport phenomena and clot dissolving therapy: An experimental investigation of diffusion-controlled and permeation-enhanced fibrinolysis. Thromb Haemost, 1994;72:105–12.
  • Yang TZ, Nyiawung D, Silber A, Hao JK, Lai L, Bai SH. Comparative studies on chitosan and polylactic-co-glycolic acid incorporated nanoparticles of low molecular weight heparin. AAPS PharmSciTech, 2012;13:1309–18.
  • Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials, 2001;22:231–41.
  • Zhang ZQ, Li BYZ, Suwan J, Zhang FM, Wang ZY, Liu HY, Mulloy B, Linhardt RJ. Analysis of pharmaceutical heparins and potential contaminants using (1)H-NMR and PAGE. J Pharm Sci, 2009;98:4017–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.