198
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Preparation, characterization and in vitro evaluation of ε-polylysine-loaded polymer blend microparticles for potential pancreatic cancer therapy

, , , , , & show all
Pages 582-591 | Received 30 May 2017, Accepted 17 Aug 2017, Published online: 03 Sep 2017

References

  • Ali I. Nano anti-cancer drugs: pros and cons and future perspectives. Curr Cancer Drug Targets, 2011;11:131–4.
  • Ali I, Aboul-Enein HY, Ghanem A. Enantioselective toxicity and carcinogenesis. Curr Pharm Anal, 2005;1:109–25.
  • Ali I, Nadeem Lone M, Al-Othman Z, Al-Warthan A, Marsin Sanagi M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr Cancer Drug Targets, 2015;16:711–34.
  • Ali I, Salim K, Rather MA, Wani WA, Haque A. Advances in nano drugs for cancer chemotherapy. Curr Cancer Drug Targets, 2011;11:135–46.
  • Arnold L, Dagan A, Gutheil J, Kaplan N. Antineoplastic activity of poly (L-lysine) with some ascites tumor cells. Proc Natl Acad Sci, 1979;76:3246–50.
  • Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials, 1996;17:93–102.
  • Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials, 1993;14:359–64.
  • Chew SA, Hinojosa VA, Arriaga MA. 2017. 11 - Bioresorbable polymer microparticles in the medical and pharmaceutical fields. Bioresorbable Polymers for Biomedical Applications. UK: Woodhead Publishing, 229–264. ISBN: 978-0-08-100262-9
  • De Tayrac R, Chentouf S, Garreau H, Braud C, Guiraud I, Boudeville P, Vert M. In vitro degradation and in vivo biocompatibility of poly (lactic acid) mesh for soft tissue reinforcement in vaginal surgery. J Biomed Mater Res B Appl Biomater, 2008;85:529–36.
  • Ferlay J, Soerjomataram I, Ervik M. 2012. GLOBOCAN, cancer incidence and mortality worldwide: IARC cancer base no. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013.
  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 2015;136(5):E359–E386.
  • ISO I. 2009. 10993-05: biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. ISO 10993-12: 2007. International Organization for Standardization.
  • Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S. Poly‐lactic acid: Production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Safety, 2010;9:552–71.
  • Joye IJ, Mcclements DJ. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr Opin Colloid Interf Sci, 2014;19:417–27.
  • Kim SH, Jeong JH, Chun KW, Park TG. Target-specific cellular uptake of PLGA nanoparticles coated with poly (L-lysine)-poly (ethylene glycol)-folate conjugate. Langmuir, 2005;21:8852–7.
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerf, 2010;75:1–18.
  • Laemmli U. Characterization of DNA condensates induced by poly (ethylene oxide) and polylysine. Proc Natl Acad Sci USA, 1975;72:4288–92.
  • Leo E, Ruozi B, Tosi G, Vandelli MA. PLA-microparticles formulated by means a thermoreversible gel able to modify protein encapsulation and release without being co-encapsulated. Int J Pharm, 2006;323:131–8.
  • Mantripragada VP, Jayasuriya AC. Effect of dual delivery of antibiotics (vancomycin and cefazolin) and BMP-7 from chitosan microparticles on Staphylococcus epidermidis and pre-osteoblasts in vitro. Mater Sci Eng C, 2016;67:409–17.
  • Moghe A, Gupta B. Co‐axial electrospinning for nanofiber structures: Preparation and applications. Polymer Rev, 2008;48:353–77.
  • Obayemi J, Danyuo Y, Dozie-Nwachukwu S, Odusanya O, Anuku N, Malatesta K, Yu W, Uhrich K, Soboyejo W. PLGA-based microparticles loaded with bacterial-synthesized prodigiosin for anticancer drug release: Effects of particle size on drug release kinetics and cell viability. Mater Sci Eng C, 2016;66:51–65.
  • Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev, 2003;55:403–19.
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm, 2006;307:93–102.
  • Rasal RM, Janorkar AV, Hirt DE. Poly (lactic acid) modifications. Progress Polym Sci, 2010;35:338–56.
  • Rozenberg M, Shoham G. FTIR spectra of solid poly-l-lysine in the stretching NH mode range. Biophys Chem, 2007;125:166–71.
  • Saini P, Arora M, Kumar MR. Poly (lactic acid) blends in biomedical applications. Adv Drug Deliv Rev, 2016;107:47–59.
  • Saleem K, Wani WA, Haque A, Malhotra A, Ali I. Nanodrugs: Magic bullets in cancer chemotherapy. Topics Anti Cancer Res, 2013;58:437–94.
  • Shan X, Yuan Y, Liu C, Xu F, Sheng Y. Comparison of the PLA-mPEG and mPEG-PLA-mPEG copolymers nanoparticles on the plasma protein adsorption and in vivo biodistribution. Soft Matter, 2009;5:2875–83.
  • Shukla SC, Singh A, Pandey AK, Mishra A. Review on production and medical applications of ɛ-polylysine. Biochem Eng J, 2012;65:70–81.
  • Szende B, Szökán G, Tyihá E, Pál K, Gáborjányi R, Almás M, Khlafulla A. Antitumor effect of lysine-isopeptides. Cancer Cell Int, 2002;2:1.
  • Tait SW, Green DR. Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol, 2010;11:621–32.
  • US Food and Drug Administration (USFDA). 2011. Inventory of effective food contact substance (FCS) notifications. FCN no. 1018.
  • Wang DK, Varanasi S, Fredericks PM, Hill DJ, Symons AL, Whittaker AK, Rasoul F. FT‐IR characterization and hydrolysis of PLA‐PEG‐PLA based copolyester hydrogels with short PLA segments and a cytocompatibility study. J Polym Sci A Poly Chem, 2013;51:5163–76.
  • World Health Organization. 2014. Cancer Fact sheet N 297. February 2014.
  • Wu F-LL, Yeh T-H, Chen Y-L, Chiu Y-C, Cheng J-C, Wei M-F, Shen L-J. Intracellular delivery of recombinant arginine deiminase (rADI) by heparin-binding hemagglutinin adhesion peptide restores sensitivity in rADI-resistant cancer cells. Mol Pharm, 2014;11:2777–86.
  • Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K. Long-circulating poly (ethylene glycol)–poly (D, L-lactide) block copolymer micelles with modulated surface charge. J Control Release, 2001;77:27–38.
  • Yeh T-H, Chen Y-R, Chen S-Y, Shen W-C, Ann DK, Zaro JL, Shen L-J. Selective intracellular delivery of recombinant arginine deiminase (ADI) using pH-sensitive cell penetrating peptides to overcome ADI resistance in hypoxic breast cancer cells. Mol Pharm, 2015;13:262–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.