273
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Intranasal delivery of tapentadol hydrochloride–loaded chitosan nanoparticles: formulation, characterisation and its in vivo evaluation

&
Pages 644-658 | Received 22 Apr 2017, Accepted 30 Aug 2017, Published online: 18 Sep 2017

References

  • Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release, 2004;100:5–28.
  • Aktas Y, Yemisci M, Andrieux K, Gürsoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Riguera R, Sargon MF. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem, 2005;16:1503–11.
  • Al-Ghananeem AM, Saeed H, Florence R, Yokel RA, Malkawi AH. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by AIDS viruses. J Drug Target, 2010;18:381–8.
  • Alam S, Khan ZI, Mustafa G, Kumar M, Islam F, Bhatnagar A, Ahmad FJ. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: A pharmacoscintigraphic study. Int J Nanomed, 2012;7:5705–18.
  • Ali J, Ali M, Baboota S, Kaur Sahni J, Ramassamy C, Dao L. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des, 2010;16:1644–53.
  • Ali J, Ali N, Sultana Y, Baboota S, Faiyaz S. Development and validation of a stability-indicating HPTLC method for analysis of antitubercular drugs. Acta Chromatographica, 2007;18:168.
  • Bancroft JD, Gamble M. 2008. Theory and practice of histological techniques. Philadelphia, USA: Elsevier Health Sciences.
  • Benediktsdóttir BE, Baldursson Ó, Másson M. Challenges in evaluation of chitosan and trimethylated chitosan (TMC) as mucosal permeation enhancers: From synthesis to in vitro application. J Control Release, 2014;173:18–31.
  • Borchard G, Lueßen HL, De Boer AG, Verhoef JC, Lehr CM, Junginger HE. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J Control Release, 1996;39:131–8.
  • Branch SK. Guidelines from the international conference on harmonisation (ICH). J Pharm Biomed Anal, 2005;38:798–805.
  • Costantino L, Boraschi D. Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents?. Drug Discov Today, 2012;17:367–78.
  • Courteix C, Bourget P, Caussade F, Bardin M, Coudore F, Fialip J, Eschalier A. Is the reduced efficacy of morphine in diabetic rats caused by alterations of opiate receptors or of morphine pharmacokinetics?. J Pharmacol Exp Ther, 1998;285:63–70.
  • Dyer A, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R, Smith A, Illum L. Nasal delivery of insulin using novel chitosan based formulations: A comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res, 2002;19:998–1008.
  • Fathima N, Mamatha T, Qureshi HK, Anitha N, Rao JV. Drug-excipient interaction and its importance in dosage form development. IJPR, 2011;1:289–96.
  • Fazil M, Md S, Haque S, Kumar M, Baboota S, Kaur Sahni J, Ali J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci, 2012;47:6–15.
  • Fernandez-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res, 1999;16:1576–81.
  • Gandhi R, Khatri N, Baradia D, Vhora I, Misra A. Surface-modified epirubicin-HCl liposomes and its in vitro assessment in breast cancer cell-line: MCF-7. Drug Deliv, 2016;23:1152–62.
  • Gazori T, Khoshayand MR, Azizi E, Yazdizade P, Nomani A, Haririan I. Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: Formulation, optimization and in vitro characterization. Carbohydr Polym, 2009;77:599–606.
  • Guideline IHT. 1999. Stability Testing Guidelines: Stability Testing of New Drug Substances and Products. ICH Q1A (R2)(CPMP/ICH/2736/99).
  • Hao J, Fang X, Zhou Y, Wang J, Guo F, Li F, Peng X. Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design. Int J Nanomedicine, 2011;6:683–92.
  • Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MaJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release, 2001;73:255–67.
  • Jang KI, Lee HG. Stability of chitosan nanoparticles for L-ascorbic acid during heat treatment in aqueous solution. J Agric Food Chem, 2008;56:1936–41.
  • Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release, 2006;115:216–25.
  • Khan S, Patil K, Bobade N, Yeole P, Gaikwad R. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Target, 2010;18:223–34.
  • Kumar M, Pandey RS, Patra KC, Jain SK, Soni ML, Dangi JS, Madan J. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int J Biol Macromol, 2013;61:189–95.
  • Landis MS, Boyden T, Pegg S. Nasal-to-CNS drug delivery: Where are we now and where are we heading? An industrial perspective. Ther Deliv, 2012;3:195–208.
  • Lee KY, Ha WS, Park WH. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials, 1995;16:1211–6.
  • Md S, Ali M, Ali R, Bhatnagar A, Baboota S, Ali J. Donepezil nanosuspension intended for nose to brain targeting: in vitro and in vivo safety evaluation. Int J Biol Macromol, 2014;67:418–25.
  • Md S, Khan RA, Mustafa G, Chuttani K, Baboota S, Sahni JK, Ali J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur J Pharm Sci, 2013;48:393–405.
  • Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm, 2009;379:146–57.
  • Mitra S, Gaur U, Ghosh P, Maitra A. Tumour targeted delivery of encapsulated dextran–doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release, 2001;74:317–23.
  • Nadkarni SS, Abraham J, Khatri K. 2014. Pharmaceutical composition of tapentadol for parenteral administration. Google Patents.
  • Nadkarni SS, Abraham J, Khatri K, Mittal V. 2013. Pharmaceutical invention of tapentadol. Google Patents.
  • Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym, 2008;73:44–54.
  • Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: An excellent platform for brain targeting. Expert Opin Drug Deliv, 2013;10:957–72.
  • Patel D, Naik S, Chuttani K, Mathur R, Mishra AK, Misra A. Intranasal delivery of cyclobenzaprine hydrochloride-loaded thiolated chitosan nanoparticles for pain relief. J Drug Target, 2013;21:759–69.
  • Patel D, Naik S, Misra A. Improved transnasal transport and brain uptake of tizanidine HCl‐loaded thiolated chitosan nanoparticles for alleviation of pain. J Pharm Sci, 2012;101:690–706.
  • Pengpong T, Sangvanich P, Sirilertmukul K, Muangsin N. Design, synthesis and in vitro evaluation of mucoadhesive p-coumarate-thiolated-chitosan as a hydrophobic drug carriers. Euro J Pharm Biopharm, 2014;86:487–97.
  • Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: How, why and what for? J Pharm Pharmaceut Sci, 2009;12:288–311.
  • Sawant K, Pandey A, Patel S. Aripiprazole loaded poly (caprolactone) nanoparticles: Optimization and in vivo pharmacokinetics. Mater Sci Eng C, 2016;66:230–43.
  • Seju U, Kumar A, Sawant K. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomaterialia, 2011;7:4169–76.
  • Singh DR, Nag K, Shetti AN, Krishnaveni N. Tapentadol hydrochloride: A novel analgesic. Saudi J Anaesth, 2013;7:322.
  • Sonaje K, Chuang EY, Lin KJ, Yen TC, Su FY, Tseng MT, Sung HW. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: microscopic, ultrastructural, and computed-tomographic observations. Mol Pharm, 2012;9:1271–9.
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release, 2001;70:1–20.
  • Tamai I, Tsuji A. Drug delivery through the blood-brain barrier. Adv Drug Deliv Rev, 1996;19:401–24.
  • Turk DC, Wilson HD, Cahana A. Treatment of chronic non-cancer pain. Lancet, 2011;377:2226–35.
  • Tzschentke T, De Vry J, Terlinden R, Hennies HH, Lange C, Strassburger W, Haurand M, Kolb J, Schneider J, Buschmann H. Tapentadol hydrochloride. Drugs Future, 2006;31:1053–61.
  • Tzschentke TM, Christoph T, Kögel B, Schiene K, Hennies HH, Englberger W, Haurand M, Jahnel U, Cremers TI, Friderichs E. (–)-(1R, 2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl): A novel μ-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties. J Pharmacol Exp Ther, 2007;323:265–76.
  • Ugwoke MI, Verbeke N, Kinget R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J Pharm Pharmacol, 2001;53:3–22.
  • Umukoro S, Ashorobi RB. Further studies on the antinociceptive action of aqueous seed extract of Aframomum melegueta. J Ethnopharmacol, 2007;109:501–4.
  • Wang X, Chi N, Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm, 2008;70:735–40.
  • Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release, 1999;59:299–307.
  • Yin Y, Chen D, Qiao M, Lu Z, Hu H. Preparation and evaluation of lectin-conjugated PLGA nanoparticles for oral delivery of thymopentin. J Control Release, 2006;116:337–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.