1,826
Views
86
CrossRef citations to date
0
Altmetric
Review

Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks

, , &
Pages 754-771 | Received 08 Aug 2017, Accepted 31 Oct 2017, Published online: 21 Nov 2017

References

  • Abang S. 2011. Immobilisation of porcine pancreatic lipase in liquid-core capsules, PhD Thesis. Ecole Nationale Vétérinaire Agroalimentaire et de l’Alimentation, ONIRIS-Université de Nantes, France.
  • Abang S, Chan ES, Poncelet D. Effects of process variables on the encapsulation of oil in Ca-alginate capsules using an inverse gelation technique. J Microencapsul, 2012;29(5):417–28.
  • ADDIACTIVE. Tendances du monde. Gattefossé France, 2015;1–27. 96.
  • Anderson PO, Steinberg OG, Leirsund CKL. 2005. Polysaccharide capsules and methods of preparation. U.S. Patent 2005/0106233 A1.
  • Assis LM, Zavareze ER, Prentice-Hernández C, Souza-Soares LA. Characteristics of nanoparticles and their potential applications in foods. Braz J Food Technol, 2012;15(2):99–109.
  • AVEKA. 2015. Available at: http://www.aveka.com/encapsulation-microencapsulation-services.html.
  • Bae KH, Lee Y, Park TG. Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules, 2007;8(2):650–6.
  • Baimark Y, Srisuwan Y. Preparation of alginate microspheres by water-in-oil emulsion method for drug delivery: Effect of Ca2+ post-cross-linking. Adv Powder Technol, 2014;25:1541–6.
  • Beindorff CM, Zuidam NJ. 2010. Microencapsulation of fish oil. In: Nicolas Jan Zuidam, Viktor A, eds. Encapsulation technologies for active food ingredients and food processing. Nedovic: Springer, pp. 161–85.
  • Benavides S, Cortés P, Parada J, Franco W. Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chem, 2016;204:77–83.
  • Bera H, Kandukuria SG, Nayak AK, Boddupalli S. Alginate-sterculia gum gel-coated oil-entrapped alginate beads for gastroretentive risperidone delivery. Carbohydr Polym, 2015;120:74–84.
  • Bremond N, Santanach-Carreras E, Chuab LY, Bibette J. Formation of liquid-core capsules having a thin hydrogel membrane: Liquid pearls. Soft Matter, 2010;6:2484–8.
  • Brownlie K. 2007. In: Lakkis JM (ed). Marketing perspective of encapsulation technologies in food applications. Asia: Blackwell Publishing.
  • Bugarski B, Li QL, Goosen MFA, Poncelet D, Neufeld RJ. Vunjak G. Electrostatic droplet generation – Mechanism of polymer droplet formation. Aiche J, 1994;40:1026–31.
  • CAPSUM. 2015. Available at: <http://www.capsum.net>.
  • Cárdenas-Bailón F, Osorio-Revilla G, Gallardo-Velázquez T. Microencapsulation techniques to develop formulations of insulin for oral delivery: A review. J Microencapsul, 2014;30(5):409–24.
  • Carneiro HCF, Tonon RV, Grosso CRF, Hubinger MD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng, 2013;115:443–51.
  • Chan ES. Preparation of ca-alginate beads containing high oil content: Influence of process variables on encapsulation efficiency and bead properties. Carbohydr Polym, 2011;84:1267–75.
  • Chan ES, Lee BB, Ravindra P, Poncelet D. Prediction models for shape and size of ca-alginate macrobeads produced through extrusion-dripping method. J Colloid Interf Sci, 2009;338:63–72.
  • Chan LW, Lee HY, Heng PWS. Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydr Polym, 2006;63:176–87.
  • Choi BY, Park HJ, Wang SJ, Park JB. Preparation of alginate beads for floating drug delivery system: Effects of CO(2) gas-forming agents. Int J Pharm, 2002;239:81–91.
  • Chung BG, Lee KH, Khademhosseini A, Lee SH. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip, 2012;12:45–59.
  • Datta SS, Abbaspourrad A, Amstad E, Fan J, Kim SH, Romanowsky M, Shum HC, Sun B, Utada AS, Windbergs M, et al. 25th Anniversary Article: Double emulsion templated solid microcapsules: Mechanics and controlled release. Adv Mater, 2014;1–14.
  • de Paula HCB, de Oliveira EF, Abreu FOMS. Esferas (Beads) de Alginato como Agente Encapsulante de Óleo de Croton Zehntneri Pax et Hoffm. Polímeros, 2010;20:112–20.
  • Degen P, Zwar E, Schulz I, Rehage H. Magneto-responsive alginate capsules. J Phys Condens Matter, 2015;27:194105.
  • Erni P, Cramer C, Marti I, Windhab EJ, Fischer P. Continuous flow structuring of anisotropic biopolymer particles. Adv Colloid Interface Sci, 2009;150:16–26.
  • Ferrari CKB. Lipid oxidation in food and biological systems: General mechanisms and nutritional and pathological implications. Rev Nutr, 1998;(11):3–14.
  • Fischer P, Erni P. Emulsion drops in external flow fields – The role of liquid interfaces. Curr Opin Colloid Interface Sci, 2007;12:196.
  • Fu H, Liu Y, Adrià F, Shao X, Cai W, Chipot C. From material science to avant-garde cuisine. The art of shaping liquids into spheres. J Phys Chem B, 2014;118:11747–56.
  • Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard MN, Dumoulin E. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J Food Eng, 2006;75:27–35.
  • Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int, 2007;40:1107–21.
  • Goh CH, Paul Heng PWS, Chan LW. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym, 2012;88:1–12.
  • Gouin S. Microencapsulation: Industrial appraisal of existing technologies and trends. Trends Food Sci Technol, 2004;15:330–47.
  • Goula AM, Adamopoulos KG. A method for pomegranate seed application in food industries: Seed oil encapsulation. Food Biopro Process, 2012;90:639–52.
  • Grant G, Morris E, Rees D, Smith P, Thom D. Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Lett, 1973;32(1):195–8.
  • Hernandez EM. 2008. Structured lipids as delivery systems. In: Garti N., ed. Delivery and controlled release of bioactives in foods and nutraceuticals. Boca Raton, Boston, New York, Washington, DC: Elsevier.
  • Hoad C, Rayment P, Risse V, Cox E, Ciampi E, Pregent S, Marciani L, Butler M, Spiller R, Gowland P. Encapsulation of lipid by alginate beads reduces bio-accessibility: An in vivo 13C breath test and MRI study. Food Hydrocolloids, 2011;25:1190–200.
  • Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr Polym, 2013;95:50–6.
  • Jerobin J, Sureshkumar RS, Anjali CH, Mukherjee A, Chandrasekaran N. Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym, 2012;90:1750–6.
  • Johansen A, Flink JM. Immobilization of yeast cells by internal gelation of alginate. Enzyme Microb Technol, 1986;8:145–8.
  • Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul, 2010;27(3):187–97.
  • Klein J, Stock J, Vorlop KD. Pore size and properties of spherical Ca–alginate biocatalysts. Eur J Appl Microbiol Biotechnol, 1983;18:86–91.
  • Kolanowski W, Ziolkowski M, Weiszbrodt J, Kunz B, Laufenberg G. Microencapsulation of fish oil by spray drying – Impact on oxidative stability: Part 1. Eur Food Res Technol, 2006;222:336–42.
  • Lee SJ, Ying DY. 2008. Encapsulation of fish oils. In: Garti M, ed. Delivery and controlled release of bioactives in foods and nutraceuticals. Boca Raton, Boston, New York, Washington, DC: Elsevier, pp. 370–403.
  • Lee SJ, Wong M. 2014. In: Kwak HS, ed. Nano- and microencapsulation of phytochemicals, Oxford: Wiley Blackwell.
  • Li J, He J, Huang Y, Li D, Chen X. Improving surface and mechanical properties of alginate films by using ethanol as a co-solvent during external gelation. Carbohydr Polym, 2015;123:208–2016.
  • Lidert Z. Microencapsulation: An Overview of the Technology Landscape. In: Delivery System Handbook for Personal Care and Cosmetic Products Technology, Applications, and Formulations. Edited by Meyer R. Rosen Interactive Consulting, Inc. East Norwich, New York Edited by Meyer R, New York 2005, p. 181–90.
  • Liu L, Wu F, Ju X, Xie R, Wang W, Niu CH, Chuac L. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions. J Colloid Interface Sci, 2013;404:85–90.
  • Liu S, Li H, Tang B, Bi S, Li L. Scaling law and microstructure of alginate hydrogel. Carbohydr Polym, 2016;135:101–9.
  • Lopez MD, Maudhuit A, Pascual-Villalobos MJ, Poncelet D. Development of formulations to improve the controlled-release of linalool to be applied as an insecticide. J Agric Food Chem, 2012;60(5):1187–92.
  • Lord Rayleigh SJW. On the stability of jets. Proc London Math Soc, 1878;10:4–13.
  • Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B. Immobilization of cells by electrostatic droplet generation: A model system for potential application in medicine. Int J Nanomed, 2006;1:163–71.
  • MarketsandMarkets. 2012. Global food encapsulation market (2012-2017). Copyright MarketsandMarkets, p: 1–277.
  • Marques HMC. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J, 2010;25:313–26.
  • Martins E, Poncelet D, Marquis M, Davy J, Renard D. Monodisperse core-shell alginate (micro)-capsules with oil core generated from droplets millifluidic. Food Hydrocolloids, 2017;63:447–56.
  • Martins E, Poncelet D, Renard D. A novel method of oil encapsulation in core-shell alginate microcapsules by dispersion-inverse gelation technique. React Funct Polym, 2017a;114:49–57.
  • Martins E, Renard D, Adiwijaya Z, Karaoglan E, Poncelet D. Oil encapsulation in core-shell alginate capsules by inverse gelation. I: Dripping methodology. J Microencapul, 2017b;34(1):82–90.
  • Martins E, Renard D, Davy J, Marquis M, Poncelet D. Oil core microcapsules by inverse gelation technique. J Microencapsul, 2015;32(1):86–95.
  • McNamee BF, White LE, O’Riordan ED, O’Sullivan M. Effect of partial replacement of gum arabic with carbohydrates on its microencapsulation properties. J Agric Food Chem, 2010;49:3385–8.
  • Morales E, Rubilar M, Burgos-Díaz C, Acevedo F, Penning M, Shene C. Alginate/Shellac beads developed by external gelation as a highly efficient model system for oil encapsulation with intestinal delivery. Food Hydrocolloids, 2017;70:321–8.
  • Nakagawa K. 2014. In: Kwak H-S, ed. Nano- and microencapsulation of flavour in food systems. Oxford: Wiley Blackwell.
  • Nakagawa K, Sowasod N, Tanthapanichakoon W, Charinpanitkul T. Hydrogel based oil encapsulation for controlled release of curcumin by using a ternary system of chitosan, kappa-carrageenan, and carboxymethylcellulose sodium salt. LWT – Food Sci Technol, 2013;54:600–5.
  • Natrajan D, Srinivasan S, Sundar K, Ravindran A. Formulation of essential oil-loaded chitosan–alginate nanocapsules. J Food Drug Anal, 2015;3:560–8.
  • Nikam VK, Kotade KB, Gaware VM, Dolas RT. Eudragit a versatile polymer: A review. Pharmacol Online, 2011;1:152–64.
  • Nussinovitch A, Gershon Z, Nussinovitch M. Liquid-core hydrocolloid capsules. Food Hydrocolloids, 1996;10:21–6.
  • Ouwerx C, Velings N, Mestdagh MM, Axelos MAV. Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polym Gels Networks, 1998;6:393–408.
  • Patel AR, Remijn C, Cabero AIM, Heussen PCM, ten Hoorn JWMS, Velikov KP. Novel all-natural microcapsules from gelatin and shellac for biorelated applications. Adv Funct Mater, 2013;23:4710–18.
  • Pawlik A. 2012. Duplex emulsions for healthy foods. PhD Thesis. The University of Birmingham, 1–228.
  • Peng C, Zhao SQ, Zhang J, Huang GY, Chen LY, Zhao FY. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem, 2014;165:560–8.
  • Peniche C, Howland I, Carrillo O, Zaldı´var C, Argüelles-Monal W. Formation and stability of shark liver oil loaded chitosan/calcium alginate capsules. Food Hydrocolloids, 2004;18(5):865–71.
  • Perez FS, Bertagnolli SMM, Alves MP, Penna NG. Nanotecnologia: Aplicações na Área de alimentos. Disc Scientia, 2012;13(1):1–14.
  • Piornos JA, Burgos-Díaz C, Morales E, Rubilar M, Acevedo F. Highly efficient encapsulation of linseed oil into alginate/lupin protein beads: Optimization of the emulsion formulation. Food Hydrocolloids, 2017;63:139–48.
  • Poncelet D, Lencki R, Beaulieu C, Halle JP, Neufeld JP, Fournier A. Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl Microbiol Biotechnol, 1992;38:39–45.
  • Prusse U, Vorlop KD. 2004. The Jetcutter technology. In: Nedovic V, Willaert R, eds. Fundamentals of cell immobilisation biotechnology, vol. 8A. Dordrecht: Kluwer Academic Publishers, pp. 295–309.
  • Reineccius GA. 2001. The spray drying of food ingredients. In: Per Vilstrup, ed. Microencapsulation of food ingredients. England: Leatherhead Publishing, pp. 151–85.
  • Ren PW, Ju XJ, Xie R, Chu LY. Monodisperse alginate microcapsules with oil core generated from a microfluidic device. J Colloid Interface Sci, 2010;343:392–5.
  • Risch SJ, Reineccius GAA. 1988. Flavor encapsulation. ACS Symposium Series 370. Washington, DC: American Chemical Society.
  • Sabliov CM, Astete CE. 2008. Encapsulation and controlled release of antioxidants and vitamins. In: Garti N, ed. Delivery and controlled release of bioactives in foods and nutraceuticals. Boca Raton, Boston, New York, Washington, DC: Elsevier.
  • Santos GKN, Dutra KA, Lira CS, Lima BN, Napoleão TH, Paiva MGP, Maranhão CA, Brandão SSF, Navarro DMAF. Effects of Croton rhamnifolioides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity. Molecules, 2014;19:16573–87.
  • Schmaltz C, dos Santos JV, Stanisçuaski Guterres SS. Nanocápsulas como uma tendência promissora na área cosmética: A imensa potencialidade deste pequeno grande recurso. Infarma, 2005;16:13–14.
  • Schmit A, Courbin L, Marquis M, Renard D, Panizza P. A pendant drop method for the production of calibrated double emulsions and emulsion gels. RSC Adv, 2014;4:28504.
  • Schwinger C, Koch S, Jahnz U, Wittlich P, Rainov N, Kressler J. High throughput encapsulation of murine fibroblasts in alginate using the JetCutter technology. J Microencapsul, 2002;19:273–80.
  • Smidsrød O, Haug A. Dependence upon uronic acid composition of some ion-exchange properties of alginates. Acta Chem Scand, 1968;22:1989–97.
  • Sun XT, Liu M, Xu ZR. Microfluidic fabrication of multifunctional particles and their analytical applications. Talanta, 2014;121:163–77.
  • Tate T. On the magnitude of a drop of liquid formed under different circumstances. Philos Mag, 1864;27:176–80.
  • Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WTS. Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed Engl, 2010;49:5846–68.
  • Thies C. 2001. Microencapsulation: What it is and purpose. In: Vilstrup P, ed. Microencapsulation of food ingredients. England: Leatherhead Publishing, pp. 1–30.
  • Transparency Market Research. 2015. Available in: http://www.transparencymarket research.com/pressrelease/microencapsulation-market.htm.
  • Umbanhowar P, Prasad V, Weitz DA. Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir, 2000;16:347.
  • Vasisht N. 2014. Factors and mechanisms in microencapsulation. In: Gaonkar A, Vasisht N, Khare A, Sobel R, eds. Microencapsulation in the food industry. USA: Academic Press is an imprint of Elsevier, pp. 15–24.
  • Voncina B, Kreft O, Kokol V, Chen WT. Encapsulation of Rosemary oil in ethylcellulose microcapsules. Textile Polym J, 2009;1(1):1–19.
  • Weber C. Zum Zerfall eines Flussigkeitsstrahles. Z Angew Math Mech, 1931;11:136–54.
  • Wang W, Waterhouse GIN, Sun-Waterhouse D. Co-extrusion encapsulation of canola oil with alginate: Effect of quercetin addition to oil core and pectin addition to alginate shell on oil stability. Food Res Int, 2013;54:837–51.
  • Whelehan M, Marison IW. Microencapsulation by dripping and jet break up. Bioencapsul Innovations, 2011;1:4–10.
  • Wu Q, Zhang T, Xue Y, Xue C, Wang Y. Preparation of alginate core–shell beads with different M/G ratios to improve the stability of fish oil. LWT-Food Sci Technol, 2017;80:304–10.
  • Yan C, Wei Zhang W. 2014. Coacervation processes. In: Gaonkar AG, Vasisht N, Khare AR, Sobel R, eds. Microencapsulation in the food industry. USA: Academic Press is an imprint of Elsevier, pp. 125–38.
  • Zhang H, Tumarkin E, Sullan RMA, Walker GC, Kumacheva E. Exploring microfluidic routes to microgels of biological polymers. Macromol Rapid Commun, 2007;28:527–38.
  • Ziani K, Fang Y, McClements DJ. Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: Vitamin E, vitamin D, and lemon oil. Food Chem, 2012;134:1106–12.
  • Zuidam NJ, Shimoni E. 2010. Overview of microencapsulation for use in food products or processes and methods to make them. In: Zuidam NJ, Nedovic VA, eds. Encapsulation technologies for active food ingredients and food processing. New York: Springer, pp. 3–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.