557
Views
31
CrossRef citations to date
0
Altmetric
Review

Delivery of phytochemicals by liposome cargos: recent progress, challenges and opportunities

, , , , &
Pages 215-235 | Received 19 Sep 2018, Accepted 07 May 2019, Published online: 19 Jun 2019

References

  • Abrankó, L., et al., 2015. Genistein isoflavone glycoconjugates in sour cherry (Prunus cerasus L.) cultivars. Food chemistry, 166, 215–222.
  • Ahmad, I., et al., 2017. Supercritical anti-solvent technique assisted synthesis of thymoquinone liposomes for radioprotection: formulation optimization, in-vitro and in-vivo studies. International journal of pharmaceutics, 523 (1), 398–409.
  • Akogou, F.U.G., et al., 2018. Antimicrobial evaluation of red, phytoalexin-rich sorghum food biocolorant. PloS one, 13 (3), e0194657.
  • Ali-Seyed, M., et al., 2016. Betulinic acid: recent advances in chemical modifications, effective delivery, and molecular mechanisms of a promising anticancer therapy. Chemical biology and drug design, 87 (4), 517–536.
  • Alipieva, K., et al., 2014. Verbascoside – A review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnology advances, 32 (6), 1065–1076.
  • Arora, A., et al., 2000. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Archives of biochemistry and biophysics, 373 (1), 102–109.
  • Bai, X., et al., 2003. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. Journal of biological chemistry, 278 (37), 35501–35507.
  • Balanč, B.D., et al., 2015. Resveratrol‐loaded liposomes: interaction of resveratrol with phospholipids. European journal of lipid science and technology, 117 (10), 1615–1626.
  • Bhaskarachary, K., et al., 1995. Carotene content of some common and less familiar foods of plant origin. Food chemistry, 54 (2), 189–193.
  • Brisibe, E.A., et al., 2009. Nutritional characterisation and antioxidant capacity of different tissues of Artemisia annua L. Food chemistry, 115 (4), 1240–1246.
  • Caddeo, C., et al., 2013. Nanocarriers for antioxidant resveratrol: formulation approach, vesicle self-assembly and stability evaluation. Colloids and surfaces B: Biointerfaces, 111, 327–332.
  • Caddeo, C., et al., 2016. Cross-linked chitosan/liposome hybrid system for the intestinal delivery of quercetin. Journal of colloid and interface science, 461, 69–78.
  • Caddeo, C., et al., 2017. Physico-chemical characterization of succinyl chitosan-stabilized liposomes for the oral co-delivery of quercetin and resveratrol. Carbohydrate polymers, 157, 1853–1861.
  • Cassidy, A., et al., 2006. Factors affecting the bioavailability of soy isoflavones in humans after ingestion of physiologically relevant levels from different soy foods. The journal of nutrition, 136 (1), 45–51.
  • Cavalcanti, I. M. F., et al., 2015. Antimicrobial activity of β-lapachone encapsulated into liposomes against meticillin-resistant Staphylococcus aureus and Cryptococcus neoformans clinical strains. Journal of global antimicrobial resistance, 3 (2), 103–108.
  • Cavalcanti, I.M.F., et al., 2011. The encapsulation of β-lapachone in 2-hydroxypropyl-β-cyclodextrin inclusion complex into liposomes: a physicochemical evaluation and molecular modeling approach. European journal of pharmaceutical sciences, 44 (3), 332–340.
  • Chandrasekara, A. and Josheph Kumar, T., 2016. Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits. International journal of food science, 2016, 1.
  • Chen, H., et al., 2012. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. Journal of liposome research, 22 (2), 100–109.
  • Chen, L.G., et al., 2008. Wogonin, a bioactive flavonoid in herbal tea, inhibits inflammatory cyclooxygenase‐2 gene expression in human lung epithelial cancer cells. Molecular nutrition and food research, 52 (11), 1349–1357.
  • Chen, Y., et al., 2009. Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomedicine: Nanotechnology, biology and medicine, 5 (3), 316–322.
  • Chen, Z.Y. and Chan, P.T., 1996. Antioxidative activity of green tea catechins in canola oil. Chemistry and physics of lipids, 82 (2), 163–172.
  • Cilliers, J.J.L. and Singleton, V.L., 1990. Autoxidative phenolic ring opening under alkaline conditions as a model for natural polyphenols in food. Journal of agricultural and food chemistry, 38 (9), 1797–1798. ClinicalTrials.gov.
  • Daba, M.H. and Abdel-Rahman, M.S., 1998. Hepatoprotective activity of thymoquinone in isolated rat hepatocytes. Toxicology letters, 95 (1), 23–29.
  • Dadgar, N., et al., 2014. Effects of nanoliposomal and pegylated nanoliposomal artemisinin in treatment of breast cancer. Indian journal of clinical biochemistry, 29 (4), 501–504.
  • Davidov-Pardo, G. and McClements, D.J., 2014. Resveratrol encapsulation: designing delivery systems to overcome solubility, stability and bioavailability issues. Trends in food science and technology, 38 (2), 88–103.
  • de Azambuja, C.R.L., et al., 2015. Physico-chemical characterization of asolectin–genistein liposomal system: an approach to analyze its in vitro antioxidant potential and effect in glioma cells viability. Chemistry and physics of lipids, 193, 24–35.
  • Delchier, N., Reich, M., and Renard, C.M., 2012. Impact of cooking methods on folates, ascorbic acid and lutein in green beans (Phaseolus vulgaris) and spinach (Spinacea oleracea). LWT-Food science and technology, 49 (2), 197–201.
  • Elmowafy, M., et al., 2013. Silymarin loaded liposomes for hepatic targeting: in vitro evaluation and HepG2 drug uptake. European journal of pharmaceutical sciences, 50 (2), 161–171.
  • Ethemoglu, M.S., et al., 2017. Anticonvulsant activity of resveratrol-loaded liposomes in vivo. Neuroscience, 357,12–19.
  • Faikoh, E.N., Hong, Y.-H., and Hu, S.-Y., 2014. Liposome-encapsulated cinnamaldehyde enhances zebrafish (Danio rerio) immunity and survival when challenged with Vibrio vulnificus and Streptococcus agalactiae. Fish and shellfish immunology, 38 (1), 15–24.
  • Fang, J.-Y., et al., 2006. Enhancement of the transdermal delivery of catechins by liposomes incorporating anionic surfactants and ethanol. International journal of pharmaceutics, 310 (1–2), 131–138.
  • Gali-Muhtasib, H., Roessner, A., and Schneider-Stock, R., 2006. Thymoquinone: a promising anti-cancer drug from natural sources. The international journal of biochemistry and cell biology, 38 (8), 1249–1253.
  • Ge, L., et al., 2017. Nine phenylethanoid glycosides from Magnolia officinalis var. biloba fruits and their protective effects against free radical-induced oxidative damage. Scientific reports, 7, 45342.
  • Gibis, M., Zeeb, B., and Weiss, J., 2014. Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes. Food hydrocolloids, 38, 28–39.
  • Gordaliza, M., et al., 2004. Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon, 44 (4), 441–459.
  • Gregoriadis, G., and Ryman, B.E., 1971. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. The biochemical journal, 124 (5), 58P
  • Guiot, P., 1986. Polymeric nanoparticles and microspheres. Boca Raton, FL: CRC Press.:
  • Hasan, M., et al., 2014. Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. International journal of pharmaceutics, 461 (1–2), 519–528.
  • He, H., et al., 2019. Adapting liposomes for oral drug delivery. Acta pharmaceutica sinica B, 9 (1), 36–48.
  • Hedrick, U. P., 1972. Sturtevant's edible plants of the world. New York: Dover Publications.
  • Hu, B., et al., 2017. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. Journal of food and drug analysis, 25 (1), 3–15.
  • Hussain, H. and Green, I.R., 2017. Lapachol and lapachone analogs: a journey of two decades of patent research (1997-2016). Expert opinion on therapeutic patents, 27 (10), 1111–1121.
  • Isacchi, B., et al., 2011a. Antihyperalgesic activity of verbascoside in two models of neuropathic pain. The journal of pharmacy and pharmacology, 63 (4), 594–601.
  • Isacchi, B., et al., 2011b. Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice. Journal of liposome research, 21 (3), 237–244.
  • Isacchi, B., et al., 2011c. Salvianolic acid B and its liposomal formulations: anti-hyperalgesic activity in the treatment of neuropathic pain. European journal of pharmaceutical sciences, 44 (4), 552–558.
  • Isacchi, B., et al., 2012. Artemisinin and artemisinin plus curcumin liposomal formulations: enhanced antimalarial efficacy against Plasmodium berghei-infected mice. European journal of pharmaceutics and biopharmaceutics, 80 (3), 528–534.
  • Isacchi, B., et al., 2017. Liposomal formulation to increase stability and prolong antineuropathic activity of verbascoside. Planta medica, 83 (05), 412–419.
  • Isailović, B.D., et al., 2013. Resveratrol loaded liposomes produced by different techniques. Innovative food science and emerging technologies, 19, 181–189.
  • Jangde, R. and Singh, D., 2016. Preparation and optimization of quercetin-loaded liposomes for wound healing, using response surface methodology. Artificial cells, nanomedicine, and biotechnology, 44 (2), 635–641.
  • Jeon, S., Yoo, C.Y., and Park, S.N., 2015. Improved stability and skin permeability of sodium hyaluronate-chitosan multilayered liposomes by Layer-by-Layer electrostatic deposition for quercetin delivery. Colloids and surfaces B: biointerfaces, 129, 7–14.
  • Jiang, Q-q., et al., 2008. Improved therapeutic effectiveness by combining liposomal honokiol with cisplatin in lung cancer model. BMC cancer, 8 (1), 242.
  • Jin, H.-H., Lu, Q., and Jiang, J.-G., 2016. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. Journal of dairy science, 99 (3), 1780–1790.
  • Jøraholmen, M.W., et al., 2015. Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. European journal of pharmaceutical sciences, 79, 112–121.
  • Katouzian, I., et al., 2017. Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends in food science and technology, 68, 14–25.
  • Ke, X., et al., 2007. Preparation of wogonin liposomes and its pharmacokinetics in rats. Journal-China pharmaceutical university, 38 (6), 502.
  • Khan, M.A., et al., 2015. Liposomal thymoquinone effectively combats fluconazole-resistant Candida albicans in a murine model. International journal of biological macromolecules, 76, 203–208.
  • Khan, S.N., et al., 2017. Enhanced killing and antibiofilm activity of encapsulated cinnamaldehyde against Candida albicans. Frontiers in microbiology, 8, 1641.
  • Kim, J.S., Lee, S.Y., and Park, S.U., 2008. Resveratrol production in hairy root culture of peanut, Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains. African journal of biotechnology, 7 (20), 3788–3790.
  • Kongkaneramit, L., Aiemsum-Ang, P., and Kewsuwan, P., 2016. Development of curcumin liposome formulations using polyol dilution method. Songklanakarin journal of science and technology, 38 (6), 605–610.
  • Kowalski, R., 2007. Studies of selected plant raw materials as alternative sources of triterpenes of oleanolic and ursolic acid types. Journal of agricultural and food chemistry, 55 (3), 656–662.
  • Kumar, N., et al., 2014. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. Pharmacological reports, 66 (5), 788–798.
  • Kundu, A., 2013. Plant growth inhibitory terpenes from Eupatorium adenophorum leaves. Journal of applied botany and food quality, 86 (1), 33–36.
  • Kwon, G.S. and Kataoka, K., 1995. Block copolymer micelles as long-circulating drug vehicles. Advanced drug delivery reviews, 16 (2–3), 295–309.
  • Leto, I., et al., 2016. Enhanced efficacy of artemisinin loaded in transferrin‐conjugated liposomes versus stealth liposomes against HCT‐8 colon cancer cells. ChemMedChem, 11 (16), 1745–1751.
  • Li, C., et al., 2012. Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. International journal of nanomedicine, 7, 5995–6002.
  • Li, H.-B., et al., 2002. Preparative isolation and purification of salvianolic acid B from the Chinese medicinal plant Salvia miltiorrhiza by high-speed counter-current chromatography. Journal of chromatography A, 943 (2), 235–239.
  • Li, L., Braiteh, F.S., and Kurzrock, R., 2005. Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer, 104 (6), 1322–1331.
  • Ling, L., et al., 2017. Assembled liposomes of dual podophyllotoxin phospholipid: preparation, characterization and in vivo anticancer activity. Nanomedicine, 12 (6), 657–672.
  • Liu, J.-J., et al., 2015. 15,16-dihydrotanshinone I from the functional food Salvia miltiorrhiza exhibits anticancer activity in human HL-60 leukemia cells: in vitro and in vivo studies. International journal of molecular sciences, 16 (8), 19387–19400.
  • Liu, Y., et al., 2016. Antitumor drug effect of betulinic acid mediated by polyethylene glycol modified liposomes. Materials science and engineering: C, 64, 124–132.
  • Liu, W., Ye, A., and Singh, H., 2015. Progress in applications of liposomes in food systems. In L.M.C. Sagis, ed. Microencapsulation and microspheres for food applications. Elsevier, 151–170.
  • Lombardo, D., et al., 2016. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials, 6 (7), 125.
  • Lu, Q., et al., 2014. Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior. LWT-Food science and technology, 57 (2), 686–695.
  • Luo, H., et al., 2008. Liposomal honokiol, a promising agent for treatment of cisplatin-resistant human ovarian cancer. Journal of cancer research and clinical oncology, 134 (9), 937–945.
  • Makwana, S., et al., 2014. Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material. LWT-Food science and technology, 57 (2), 470–476.
  • McNulty, H.P., et al., 2007. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochimica et biophysica acta (BBA)-biomembranes, 1768 (1), 167–174.
  • Mignet, N., et al., 2012. Development of a liposomal formulation of the natural flavonoid fisetin. International journal of pharmaceutics, 423 (1), 69–76.
  • Mohsen, A.M., Asfour, M.H., and Salama, A.A., 2017. Improved hepatoprotective activity of silymarin via encapsulation in the novel vesicular nanosystem bilosomes. Drug development and industrial pharmacy, 43 (12), 2043–2054.
  • Moraes, M., et al., 2013. Liposomes encapsulating beta‐carotene produced by the proliposomes method: characterisation and shelf life of powders and phospholipid vesicles. International journal of food science and technology, 48 (2), 274–282.
  • Moselhy, S.S., et al., 2018. Multifaceted role of a marvel golden molecule, curcumin: a review. Indian journal of pharmaceutical sciences, 80 (3), 400–411.
  • Mu, L-M., et al., 2017. Dual-functional drug liposomes in treatment of resistant cancers. Advanced drug delivery reviews, 115, 46–56.
  • Mueller, D., et al., 2018. Encapsulation of anthocyanins from bilberries - effects on bioavailability and intestinal accessibility in humans. Food chemistry, 248, 217–224.
  • Mullauer, F.B., et al., 2011. Betulinic acid delivered in liposomes reduces growth of human lung and colon cancers in mice without causing systemic toxicity. Anti-cancer drugs, 22 (3), 223–233.
  • Naksuriya, O., et al., 2014. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 35 (10), 3365–3383.
  • Narayanan, N.K., et al., 2009. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. International journal of cancer, 125 (1), 1–8.
  • Odeh, F., et al., 2012. Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer. Drug delivery, 19 (8), 371–377.
  • Omoni, A.O. and Aluko, R.E., 2005. The anti-carcinogenic and anti-atherogenic effects of lycopene: a review. Trends in food science and technology, 16 (8), 344–350.
  • Osman, H., Nasarudin, R., and Lee, S.L., 2004. Extracts of cocoa (Theobroma cacao L.) leaves and their antioxidation potential. Food chemistry, 86 (1), 41–46.
  • Park, S.N., Jo, N.R., and Jeon, S.H., 2014. Chitosan-coated liposomes for enhanced skin permeation of resveratrol. Journal of industrial and engineering chemistry, 20 (4), 1481–1485.
  • Patil, Y.P. and Jadhav, S., 2014. Novel methods for liposome preparation. Chemistry and physics of lipids, 177, 8–18.
  • Pentak, D., 2016. In vitro spectroscopic study of piperine-encapsulated nanosize liposomes. European biophysics journal, 45 (2), 175–186.
  • Phan, V., et al., 2013. Enhanced cytotoxicity of optimized liposomal genistein via specific induction of apoptosis in breast, ovarian and prostate carcinomas. Journal of drug targeting, 21 (10), 1001–1011.
  • Phillipson, J.D., and O'Neill, M.J., 1987. Antimalarial and amoebicidal natural products. In: K. Hostettmann and P.J. Lea, eds. Biologically active natural products. Oxford: Clarendon Press, 49–64.
  • Pinilla, C.M.B., Noreña, C.P.Z., and Brandelli, A., 2017. Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food chemistry, 220, 470–476.
  • Pradhan, S.C. and Girish, C., 2006. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian journal of medical research, 124 (5), 491.
  • Prajapati, V.D., Jani, G.K., and Kapadia, J.R., 2015. Current knowledge on biodegradable microspheres in drug delivery. Expert opinion on drug delivery, 12 (8), 1283–1299.
  • Priprem, A., et al., 2008. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine: nanotechnology, biology and medicine, 4 (1), 70–78.
  • Priprem, A., et al., 2011. Antidepressant and cognitive activities of intranasal piperine-encapsulated liposomes. Advances in bioscience and biotechnology, 02, 108–116.
  • Qian, Z., et al., 2015. A phase I trial to evaluate the multiple-dose safety and antitumor activity of ursolic acid liposomes in subjects with advanced solid tumors. BioMed research international, 2015, 1–7.
  • Rajendran, P., et al., 2008. Pharmacological evaluation of C-3 modified Betulinic acid derivatives with potent anticancer activity. Investigational new drugs, 26 (1), 25–34.
  • Rana, V.S., et al., 2017. Essential oil composition, antifungal, and seedling growth inhibitory effects of zerumbone from Zingiber zerumbet Smith. Journal of essential oil research, 29 (4), 320–329.
  • Ranjan, A.P., et al., 2013. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: inhibition of tumor growth and angiogenesis. Anticancer research, 33 (9), 3603–3609.
  • Rao, A.V. and Rao, L.G., 2007. Carotenoids and human health. Pharmacological research, 55 (3), 207–216.
  • Raphael, T.J. and Kuttan, G., 2003. Effect of naturally occurring triterpenoids glycyrrhizic acid, ursolic acid, oleanolic acid and nomilin on the immune system. Phytomedicine, 10 (6–7), 483–489.
  • Rashidinejad, A., et al., 2014. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food chemistry, 156, 176–183.
  • Rashidinejad, A., et al., 2016a. Effect of liposomal encapsulation on the recovery and antioxidant properties of green tea catechins incorporated into a hard low-fat cheese following in vitro simulated gastrointestinal digestion. Food and bioproducts processing, 100, 238–245.
  • Rashidinejad, A., Birch, E.J., and Everett, D.W., 2016b. Antioxidant activity and recovery of green tea catechins in full-fat cheese following gastrointestinal simulated digestion. Journal of food composition and analysis, 48, 13–24.
  • Rashidinejad, A., Birch, E.J., and Everett, D.W., 2016c. A novel functional full-fat hard cheese containing liposomal nanoencapsulated green tea catechins: manufacture and recovery following simulated digestion. Food and function, 7 (7), 3283–3294.
  • Rein, M.J., et al., 2013. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. British journal of clinical pharmacology, 75 (3), 588–602.
  • Sahu, B.D., et al., 2014. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence. PLoS One, 9 (9), e105070.
  • Samad, A., Sultana, Y., and Aqil, M., 2007. Liposomal drug delivery systems: an update review. Current drug delivery, 4 (4), 297–305.
  • Sanguansri, L. and Ann Augustin, M., 2010. Microencapsulation in functional food product development. In: J. Smith and E. Charter, eds. Functional food product development, 1–23.
  • Seguin, J., et al., 2013. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. International journal of pharmaceutics, 444 (1–2), 146–154.
  • Sherry, M., et al., 2013. Essential oils encapsulated in liposomes: a review. Journal of liposome research, 23 (4), 268–275.
  • Silva, G.S., et al., 2017. Characterisation of curcumin‐loaded proliposomes produced by coating of micronised sucrose and hydration of phospholipid powders to obtain multilamellar liposomes. International journal of food science and technology, 52 (3), 772–780.
  • Singh, R., et al., 2016. Antifungal and phytotoxic activity of essential oil from root of Senecio amplexicaulis Kunth.(Asteraceae) growing wild in high altitude-Himalayan region. Natural product research, 30 (16), 1875–1879.
  • Sinico, C., et al., 2008. Liposomes as carriers for verbascoside: stability and skin permeation studies. Journal of liposome research, 18 (1), 83–90.
  • Son, L., et al., 1998. Synthesis of betulinic acid from betulin and study of its solubilization usingliposomes. Bioorganicheskaia khimiia, 24 (10), 787–793.
  • Svenson, S., 2004. Carrier-based drug delivery. ACS Symposium Series; Washington: American Chemical Society, 2–23.
  • Tan, C., et al., 2013. Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure. Journal of agricultural and food chemistry, 61 (34), 8175–8184.
  • Tan, C., et al., 2014a. Liposome as a delivery system for carotenoids: comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation. Journal of agricultural and food chemistry, 62 (28), 6726–6735.
  • Tan, C., et al., 2014b. Liposomes as delivery systems for carotenoids: comparative studies of loading ability, storage stability and in vitro release. Food and function, 5 (6), 1232–1240.
  • Tan, C., et al., 2014c. Modulation of the carotenoid bioaccessibility through liposomal encapsulation. Colloids and surfaces B: biointerfaces, 123, 692–700.
  • Tan, C., et al., 2016. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food hydrocolloids, 52, 774–784.
  • Tian, J., et al., 2014. A wogonin-loaded glycyrrhetinic acid-modified liposome for hepatic targeting with anti-tumor effects. Drug delivery, 21 (7), 553–559.
  • Toniazzo, T., et al., 2014. β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: Physico-chemical stability and feasibility of application in yogurt. LWT-Food science and technology, 59 (2), 1265–1273.
  • Torchilin, V.P., 2001. Structure and design of polymeric surfactant-based drug delivery systems. Journal of controlled release, 73 (2–3), 137–172.
  • Touil, Y.S., et al., 2009. Flavonoid-induced morphological modifications of endothelial cells through microtubule stabilization. Nutrition and cancer, 61 (3), 310–321.
  • Vallverdú-Queralt, A., et al., 2014. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food chemistry, 154, 299–307.
  • Vijayakumar, M.R., et al., 2016. Trans resveratrol loaded DSPE PEG 2000 coated liposomes: an evidence for prolonged systemic circulation and passive brain targeting. Journal of drug delivery science and technology, 33, 125–135.
  • Wang, M., et al., 2017. Ursolic acid liposomes with chitosan modification: promising antitumor drug delivery and efficacy. Materials science and engineering: C, 71, 1231–1240.
  • Wang, X.-H., et al., 2011. Improved solubility and pharmacokinetics of PEGylated liposomal honokiol and human plasma protein binding ability of honokiol. International journal of pharmaceutics, 410 (1–2), 169–174.
  • Want, M.Y., et al., 2017. Nanoliposomal artemisinin for the treatment of murine visceral leishmaniasis. International journal of nanomedicine, 12, 2189–2204.
  • Wong, C.Y., Al-Salami, H., and Dass, C.R., 2018. Recent advancements in oral administration of insulin-loaded liposomal drug delivery systems for diabetes mellitus. International journal of pharmaceutics, 549 (1–2), 201.
  • Wu, Z., et al., 2019. Optimization on conditions of podophyllotoxin-loaded liposomes using response surface methodology and its activity on PC3 cells. Journal of liposome research, 29 (2), 133–141.
  • Yang, G., et al., 2014. In vitro and in vivo antitumor effects of folate-targeted ursolic acid stealth liposome. Journal of agricultural and food chemistry, 62 (10), 2207–2215.
  • Yang, J., et al., 2017a. Liposomal honokiol induced lysosomal degradation of Hsp90 client proteins and protective autophagy in both gefitinib-sensitive and gefitinib-resistant NSCLC cells. Biomaterials, 141, 188–198.
  • Yang, J., et al., 2017b. Non-toxic dose of liposomal honokiol suppresses metastasis of hepatocellular carcinoma through destabilizing EGFR and inhibiting the downstream pathways. Oncotarget, 8 (1), 915–932.
  • You, J., et al., 2014. Preparation of curcumin-loaded long-circulating liposomes and its pharmacokinetics in rats. Zhongguo zhong yao za zhi = zhongguo zhongyao zazhi = China journal of chinese materia medica, 39 (7), 1238–1242.
  • Yuan, Z-p., et al., 2006. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clinical cancer research, 12 (10), 3193–3199.
  • Zhang, L., et al., 2012. The use of PEGylated liposomes to prolong the circulation lifetime of salvianolic acid B. Fitoterapia, 83 (4), 678–689.
  • Zhao, T., et al., 2015. Self-assembly and cytotoxicity study of PEG-modified ursolic acid liposomes. Materials science and engineering: C, 53, 196–203.
  • Zhu, F., 2017. Encapsulation and delivery of food ingredients using starch based systems. Food chemistry, 229, 542–552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.