1,805
Views
21
CrossRef citations to date
0
Altmetric
Review

The tiny big world of solid lipid nanoparticles and nanostructured lipid carriers: an updated review

, , &
Pages 72-94 | Received 26 Aug 2021, Accepted 16 Dec 2021, Published online: 10 Jan 2022

References

  • Abdel Fadeel, D.A., Kamel, R., and Fadel, M., 2020. PEGylated lipid nanocarrier for enhancing photodynamic therapy of skin carcinoma using curcumin: in-vitro/in-vivo studies and histopathological examination. Scientific reports, 10 (1), 10435.
  • Abdel-Mageed, H.M., Ezz, N., and Radwan, R., 2019a. Bio-inspired trypsin-chitosan cross-linked enzyme aggregates: a versatile approach for stabilization through carrier-free immobilization. BioTechnologia, 100 (3), 301–309.
  • Abdel-Mageed, H.M., et al., 2021a. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. Journal of microencapsulation, 38 (6), 414–436.
  • Abdel-Mageed, H.M., et al., 2021b. Biotechnology approach using watermelon rind for optimization of α-amylase enzyme production from Trichoderma virens using response surface methodology under solid-state fermentation. Folia microbiologica. https://doi.org/https://doi.org/10.1007/s12223-021-00929-2
  • Abdel-Mageed, H.M., et al., 2021c. Engineering lipase enzyme nano-powder using nano spray dryer BÜCHI B-90: experimental and factorial design approach for a stable biocatalyst production. Journal of pharmaceutical innovation, 16 (4), 759–771.
  • Abdel-Mageed, H.M., et al., 2019b. Bioconjugation as a smart immobilization approach for α-amylase enzyme using stimuli-responsive Eudragit-L100 polymer: a robust biocatalyst for applications in pharmaceutical industry. Artificial cells, nanomedicine, and biotechnology, 47 (1), 2361–2368.
  • Abuelezz, N., et al., 2020. Nanocurcumin alleviates insulin resistance and pancreatic deficits in polycystic ovary syndrome rats: insights on PI3K/AkT/mTOR and TNF-α modulations. Life sciences, 256, 118003.
  • Adams, D., et al., 2017. Trial design and rationale for APOLLO, a phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC neurology, 17 (1), 181.
  • Akanda, M., et al., 2021. Bioconjugated solid lipid nanoparticles (SLNs) for targeted prostate cancer therapy. International journal of pharmaceutics, 599, 120416.
  • Almeida, H., et al., 2017. Preparation, characterization and biocompatibility studies of thermoresponsive eyedrops based on the combination of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for controlled delivery of ibuprofen. Pharmaceutical development and technology, 22 (3), 336–349.
  • Apostolou, M., et al., 2021. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers. Journal of pharmaceutical sciences, 110 (8), 2859–2872.
  • Banerjee, I., et al., 2019. A peptide-modified solid lipid nanoparticle formulation of paclitaxel modulates immunity and outperforms dacarbazine in a murine melanoma model. Biomaterials science, 7 (3), 1161–1178.
  • Bari, E., et al., 2021. 3D bioprinted scaffolds containing mesenchymal stem/stromal lyosecretome: next generation controlled release device for bone regenerative medicine. Pharmaceutics, 13 (4), 515.
  • Begines, B., et al., 2020. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials, 10 (7), 1403.
  • Bhalekar, M.R., et al., 2017. Formulation of piperine solid lipid nanoparticles (SLN) for treatment of rheumatoid arthritis. Drug development and industrial pharmacy, 43 (6), 1003–1010.
  • Campos, J.R., et al., 2020. Solid lipid nanoparticles (SLN): prediction of toxicity, metabolism, fate and physicochemical properties, in nanopharmaceuticals. In: R. Shegokar, ed. Expectations and realities of multifunctional drug delivery systems. San Diego, CA: Elsevier, 1–15.
  • Casalini, T., et al., 2019. Molecular modeling for nanomaterial-biology interactions: opportunities, challenges, and perspectives. Frontiers in bioengineering and biotechnology, 7, 268. a
  • Ceylan, H., et al., 2019. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release. ACS nano, 13 (3), 3353–3362.
  • Chen, C.C., et al., 2010. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. European journal of pharmaceutics and biopharmaceutics, 74 (3), 474–482.
  • Chirio, D., et al., 2019. Development of solid lipid nanoparticles by cold dilution of microemulsions: curcumin loading, preliminary in vitro studies, and biodistribution. Nanomaterials, 9 (2), 230.
  • Christaki, E., Marcou, M., and Tofarides, A., 2020. Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. Journal of molecular evolution, 88 (1), 26–40.
  • Christophersen, P.C., et al., 2014. Solid lipid particles for oral delivery of peptide and protein drugs II-the digestion of trilaurin protects desmopressin from proteolytic degradation. Pharmaceutical research, 31 (9), 2420–2428.
  • Cullis, P.R. and Hope, M.J., 2017. Lipid nanoparticle systems for enabling gene therapies. Molecular therapy, 25 (7), 1467–1475.
  • Dhiman, N., et al., 2021. Lipid nanoparticles as carriers for bioactive delivery. Frontiers in chemistry, 9, 580118. https://doi.org/https://doi.org/10.3389/fchem.2021.580118
  • dos Santos, J., et al., 2021. 3D printing and nanotechnology: a multiscale alliance in personalized medicine. Advanced functional materials, 31 (16), 20096912009691..
  • El-Assal, M.I.A., 2017. Acyclovir loaded solid lipid nanoparticle based cream: a novel drug delivery system. International journal of drug delivery technology, 7, 52–62.
  • Elbahwy, I.A., et al., 2017. Enhancing bioavailability and controlling the release of glibenclamide from optimized solid lipid nanoparticles. Journal of drug delivery science and technology, 38, 78–89.
  • Garcia-Fuentes, M., et al., 2004. Application of NMR spectroscopy to the characterization of PEG-stabilized lipid nanoparticles. Langmuir, 20 (20), 8839–8845.
  • Ghanbarzadeh, S., et al., 2015. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids and surfaces. B, biointerfaces, 136, 1004–1010.
  • González-Paredes, A., et al., 2019. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. European journal of pharmaceutics and biopharmaceutics, 134, 166–177.
  • Gupta, K.M., et al., 2020. Encapsulation of ferulic acid in lipid nanoparticles as antioxidant for skin: mechanistic understanding through experiment and molecular simulation. ACS applied nano materials, 3 (6), 5351–5361.
  • Gupta, K.M., Das, S., and Chow, P.S., 2021. Molecular dynamics simulations to elucidate translocation and permeation of active from lipid nanoparticle to skin: complemented by experiments. Nanoscale, 13 (30), 12916–12928.
  • Hallan, S.S., et al., 2021. Challenges in the physical characterization of lipid nanoparticles. Pharmaceutics, 13 (4), 549.
  • Hamishehkar, H., et al., 2016. Histological assessment of follicular delivery of flutamide by solid lipid nanoparticles: potential tool for the treatment of androgenic alopecia. Drug development and industrial pharmacy, 42 (6), 846–853.
  • Hauser, E.A., 1955. The history of colloid science: in memory of Wolfgang Ostwald. Journal of chemical education, 32 (1), 2.
  • He, C., et al., 2021a. A solid lipid coated calcium peroxide nanocarrier enables combined cancer chemo/chemodynamic therapy with O2/H2O2 self-sufficiency. Acta biomaterialia, 122, 354–364.
  • He, X.L., et al., 2021b. Solid lipid nanoparticles loading with curcumin and dexanabinol to treat major depressive disorder. Neural regeneration research, 16 (3), 537–542.
  • Hou, X., et al., 2021. Lipid nanoparticles for mRNA delivery. Nature reviews. Materials, 6, 1–17. https://doi.org/https://doi.org/10.1038/s41578-021-00358-0
  • Jain, A.K. and Thareja, S., 2020. Solid lipid nanoparticles. In: I. Bhushan, V. Singh, and D. Tripathi, eds. Nanomaterials and environmental biotechnology. Cham, Switzerland: Springer, 221–249.
  • Jaiswal, P., Gidwani, B., and Vyas, A., 2016. Nanostructured lipid carriers and their current application in targeted drug delivery. Artificial cells, nanomedicine, and biotechnology, 44 (1), 27–40.
  • Ji, P., et al., 2016. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug design, development and therapy, 10, 911–925.
  • Joshi, M.D. and Müller, R.H., 2009. Lipid nanoparticles for parenteral delivery of actives. European journal of pharmaceutics and biopharmaceutics, 71 (2), 161–172.
  • Joshi, M. and Patravale, V., 2008. Nanostructured lipid carrier (NLC) based gel of celecoxib. International journal of pharmaceutics, 346 (1-2), 124–132.
  • Kamaraj, S.-K., 2020. The perspective on bio-nano interface technology for covid-19. Frontiers in nanotechnology, 2, 586250.
  • Kang, J.H., et al., 2019. Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. International journal of nanomedicine, 14, 5381–5396.
  • Keck, C.M. and Müller, R.H., 2013. Nanotoxicological classification system (NCS) - a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. European journal of pharmaceutics and biopharmaceutics, 84 (3), 445–448.
  • Keck, C.M., et al., 2014. Formulation of solid lipid nanoparticles (SLN): the value of different alkyl polyglucoside surfactants. International journal of pharmaceutics, 474, 33–41. https://doi.org/https://doi.org/10.1016/J.IJPHARM.2014.08.008
  • Kowalski, P.S., et al., 2019. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Molecular therapy, 27 (4), 710–728.
  • Kreuter, J., 2007. Nanoparticles-a historical perspective. International journal of pharmaceutics, 331 (1), 1–10.
  • Kulkarni, J.A., Cullis, P.R., and van der Meel, R., 2018. Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic acid therapeutics, 28 (3), 146–157.
  • Kuo, Y.-C. and Liang, C.-T., 2011. Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials, 32 (12), 3340–3350.
  • Kurakula, M., et al., 2016. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. Journal of liposome research, 26 (4), 288–296.
  • Lee, S.J., et al., 2020. Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration. Materials science & engineering. C, materials for biological applications, 111, 110844. https://doi.org/https://doi.org/10.1016/j.msec.2020.110844
  • Lin, C.H., et al., 2017. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Journal of food and drug analysis, 25 (2), 219–234.
  • Liu, Y.J., et al., 2015. Modulating drug release and enhancing the oral bioavailability of torcetrapib with solid lipid dispersion formulations. AAPS PharmSciTech, 16 (5), 1091–1100.
  • Madan, J., et al., 2013. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine, 9 (4), 492–503.
  • Magalhães, J., et al., 2020. Lipid nanoparticles biocompatibility and cellular uptake in a 3D human lung model. Nanomedicine, 15 (3), 259–271. https://doi.org/https://doi.org/10.2217/nnm-2019-0256
  • Mishra, V., et al., 2018. Solid lipid nanoparticles: emerging colloidal nano drug delivery system. Pharmaceutics, 10 (4), 191.
  • Mitchell, M.J., et al., 2021. Engineering precision nanoparticles for drug delivery. Nature reviews. Drug discovery, 20 (2), 101–124. https://doi.org/https://doi.org/10.1038/s41573-020-0090-8s
  • Montoto, S.S., Muraca, G., and Ruiz, M.E., 2020. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Frontiers in molecular biosciences, 7, 587997.
  • Müller, R.H., Mäder, K., and Gohla, S., 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. European journal of pharmaceutics and biopharmaceutics, 50 (1), 161–177.
  • Müller, R.H., Radtke, M., and Wissing, S.A., 2002a. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced drug delivery reviews, 54 (1), S131–S155.
  • Müller, R.H., Radtke, M., and Wissing, S.A., 2002b. Nanostructured lipid matrices for improved microencapsulation of drugs. International journal of pharmaceutics, 242 (1–2), 121–128.
  • Neves, A.R., Queiroz, J.F., and Reis, S., 2016. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. Journal of nanobiotechnology, 14, 27.
  • Neves, A.R., et al., 2017. Apo E-functionalization of Solid Lipid Nanoparticles enhances brain drug delivery: uptake mechanism and transport pathways. Bioconjugate chemistry, 28 (4), 995–1004.
  • Neves, A.R., et al., 2015. Solid lipid nanoparticles as a vehicle for brain-targeted drug delivery: two new strategies of functionalization with apolipoprotein E. Nanotechnology, 26 (49), 495103.
  • Ortiz, A.C., et al., 2021. Development of a nanostructured lipid carrier (NLC) by a low-energy method, comparison of release kinetics and molecular dynamics simulation. Pharmaceutics, 13 (4), 531. pharmaceutics13040531
  • Oumzil, K., et al., 2016. Solid lipid nanoparticles for image-guided therapy of atherosclerosis. Bioconjugate chemistry, 27 (3), 569–575.
  • Pandya, N.T., et al., 2018. Solid lipid nanoparticles as an efficient drug delivery system of olmesartan medoxomil for the treatment of hypertension. Colloids and surfaces. B, biointerfaces, 165, 37–44.
  • Pastor, F., et al., 2018. An RNA toolbox for cancer immunotherapy. Nature reviews. Drug discovery, 17 (10), 751–767.
  • Prathipati, B., et al., 2021. Neuroprotective effects of curcumin loaded solid lipid nanoparticles on homocysteine induced oxidative stress in vascular dementia. Current research in behavioral sciences, 2, 100029. doi.org/https://doi.org/10.1016/j.crbeha.2021.100029.
  • Permana, A.D., et al., 2019. Solid lipid nanoparticle-based dissolving microneedles: a promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. Journal of controlled release, 316, 34–52.
  • Pink, D.L., et al., 2021. Interplay of lipid and surfactant: impact on nanoparticle structure. Journal of colloid and interface science, 597, 278–288.
  • Pink, D.L., et al., 2019. On the structure of solid lipid nanoparticles. Small, 15 (45), e1903156.
  • Sathya, S., et al., 2018. α-Bisabolol loaded solid lipid nanoparticles attenuates Aβ aggregation and protects Neuro-2a cells from Aβ induced neurotoxicity. Journal of molecular liquids, 264, 431–441.
  • Shah, R.M., et al., 2016. Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs. International journal of pharmaceutics, 515 (1–2), 543–554.
  • Sharma, R.K., et al., 2013. Solid lipid nanoparticles as a carrier of metformin for transdermal delivery. International journal of drug delivery, 5, 137–145.
  • Shinde, S.V., et al., 2019. Lipid nanoparticles for transdermal delivery of celecoxib: an in vitro and in vivo investigation. Indian drugs, 56, 38–48.
  • Siafaka, P.I., et al., 2016. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. International journal of molecular sciences, 17 (9), 1440.
  • Silva, A.C., et al., 2012. Long-term stability, biocompatibility and oral delivery potential of risperidone-loaded solid lipid nanoparticles. International journal of pharmaceutics, 436 (1–2), 798–805.
  • Sonawane, R., et al., 2014. Solid lipid nanoparticles-loaded topical gel containing combination drugs: an approach to offset psoriasis. Expert opinion on drug delivery, 11 (12), 1833–1847.
  • Souto, E., Almeida, A., and Müller, R., 2007. Lipid nanoparticles (SLN®, NLC®) for cutaneous drug delivery: structure, protection and skin effects. Journal of biomedical nanotechnology, 3 (4), 317–331.
  • Subramaniam, B., Siddik, Z.H., and Nagoor, N.H., 2020. Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations. Journal of nanoparticle research, 22 (6), 141. https://doi.org/https://doi.org/10.1007/s11051-020-04848-0
  • Taratula, O., et al., 2013. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. Journal of controlled release, 171 (3), 349–357.
  • Tatke, A., et al., 2018. In situ gel of triamcinolone acetonide-loaded solid lipid nanoparticles for improved topical ocular delivery: tear kinetics and ocular disposition studies. Nanomaterials, 9 (1), 33.
  • Tupal, A., et al., 2016. Dermal delivery of doxorubicin-loaded solid lipid nanoparticles for the treatment of skin cancer. Journal of microencapsulation, 33 (4), 372–380.
  • Üstündağ-Okur, N., et al., 2015. Novel nanostructured lipid carrier-based inserts for controlled ocular drug delivery: evaluation of corneal bioavailability and treatment efficacy in bacterial keratitis. Expert opinion on drug delivery, 12 (11), 1791–1807.
  • Vaghasiya, H., Kumar, A., and Sawant, K., 2013. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. European journal of pharmaceutical sciences, 49 (2), 311–322.
  • Wang, F., Kream, R.M., and Stefano, G.B., 2020. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Medical science monitor, 26, e924700.
  • Wang, Q., et al., 2018. Enhanced oral bioavailability and anti-gout activity of [6]-shogaol-loaded solid lipid nanoparticles. International journal of pharmaceutics, 550 (1–2), 24–34.
  • Wavikar, P., Pai, R., and Vavia, P., 2017. Nose to brain delivery of rivastigmine by in situ gelling cationic nanostructured lipid carriers: enhanced brain distribution and pharmacodynamics. Journal of pharmaceutical sciences, 106 (12), 3613–3622.
  • Wissing, S.A. and Müller, R.H., 2001. Solid lipid nanoparticles (SLN)–a novel carrier for UV blockers. Die pharmazie, 56 (10), 783–786.
  • Wissing, S.A. and Müller, R.H., 2003. Cosmetic applications for solid lipid nanoparticles (SLN). International journal of pharmaceutics, 254 (1), 65–68.
  • Yoon, G., Park, J.W., and Yoon, I.S., 2013. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs): recent advances in drug delivery. Journal of pharmaceutical investigation, 43 (5), 353–362.
  • Zhang, J., et al., 2015. Biotinylated epidermal growth factor surface modified lipid nanoparticles to enhance the targeting efficiency in liver cancer therapy. Journal of biomaterials and tissue engineering, 5 (2), 135–141.
  • Zhang, H., et al., 2020. Aerosolizable lipid nanoparticles for pulmonary delivery of mRNA through design of experiments. Pharmaceutics, 12 (11), 1042.
  • Zhang, J., et al., 2014. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. Journal of materials chemistry. B, 2 (43), 7583–7595.
  • Zhuang, C.Y., et al., 2010. Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. International journal of pharmaceutics, 394 (1–2), 179–185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.