183
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Study of antimycobacterial, cytotoxic, and mutagenic potential of polymeric nanoparticles of copper (II) complex

, , , , , , ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 61-71 | Received 26 Aug 2021, Accepted 03 Jan 2022, Published online: 20 Jan 2022

References

  • Alasino, R.V., et al., 2012. Eudragit E100 surface activity and lipid interactions. Colloids surf B biointerfaces, 91, 84–89.
  • Barar, J., 2015. Bioimpacts of nanoparticle size: why it matters? Bioimpacts, 5, 113–115.
  • Bernstein, L., et al., 1982. An empirical approach to the statistical analysis of mutagenesis data from the Salmonella test. Mutation research., 97 (4), 267–281.
  • Cetin, M., Atila, A., and Kadioglu, Y., 2010. Formulation and in vitro characterization of Eudragit® L100 and Eudragit® L100-PLGA nanoparticles containing diclofenac sodium. AAPS PharmSciTech, 11, 1250–1256.
  • Cruz, L., et al., 2009. High encapsulation efficiency of sodium alendronate in Eudragit S100/HPMC blend microparticles. Química nova, 32 (5), 1170–1174.
  • Dai, J., et al., 2004. PH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. International journal of pharmaceutics., 280 (1–2), 229–240.
  • Darwin, K.H., 2015. Mycobacterium tuberculosis and copper: a newly appreciated defense against an old foe? The journal of biological chemistry, 290, 18962–18966.
  • De Grandis, R.A., et al., 2016. In vitro evaluation of the cyto-genotoxic potential of Ruthenium(II) SCAR complexes: a promising class of antituberculosis agents. Mutation research. Genetic toxicology and environmental mutagenesis, 798–799, 11–18.
  • Diaz, D.A., et al., 2016. Dissolution similarity requirements: how similar or dissimilar are the global regulatory expectations? The AAPS journal, 18, 15–22.
  • Drzewiecka-Antonik, A., et al., 2017. Synthesis, structural studies and biological activity of novel Cu(II) complexes with thiourea derivatives of 4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione. Journal of inorganic biochemistry, 176, 8–16.
  • Firmino, G.S.S., et al., 2016. Synthesis and evaluation of copper(II) complexes with isoniazid-derived hydrazones as anticancer and antitubercular agents. Biometals, 29, 953–963.
  • Fregonezi, N.F., et al., 2020. Cyto-genotoxic evaluation of novel anti-tubercular copper (II) complexes containing isoniazid-based ligands. Regulatory toxicology and pharmacology, 113, 104653
  • Hwang, T.L., et al., 2015. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles. International journal of nanomedicine, 10, 371–385.
  • Jain, A.K., and Thareja, S., 2019. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artificial cells, nanomedicine, and biotechnology, 47, 524–539.
  • Kadian, S.S., & Harikumar, S.L., 2009. Eudragit and its pharmaceutical significance. http://www.pharmainfo.net/satishsinghkadian/publications/eudragit-and-its-pharmaceutical-significance
  • Lee, J.H., and Yeo, Y., 2015. Controlled drug release from pharmaceutical nanocarriers. Chemical engineering science, 125, 75–84.
  • Maron, D.M., and Ames, B.N., 1983. Revised methods for the Salmonella mutagenicity test. Mutation research, 113, 173–215.
  • Mašková, E., et al., 2019. Highly soluble drugs directly granulated by water dispersions of insoluble Eudragit® polymers as a part of hypromellose K100m matrix systems. Biomed research international, 2019, 8043415.
  • Mortelmans, K., and Zeiger, E., 2000. The Ames Salmonella/microsome mutagenicity assay. Mutation research, 455, 29–60.
  • Ngwuluka, N.C., et al., 2016. Eudragit E100 and polysaccharide polymer blends as matrices for modified-release drug delivery I: physicomechanical properties. Tropical journal of pharmaceutical research, 14 (12), 2155–2162.
  • Oliveira, B.G., 2015. O estado da arte da ligação de hidrogênio. Quimica nova, 38, 1313–1322. https://doi.org/https://doi.org/10.5935/0100-4042.20150146
  • Oliveira, J.S., et al., 2006. Slow-onset inhibition of 2-trans-Enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis by an inorganic complex. Current pharmaceutical design, 12, 2409–2424.
  • Palomino, J.C., et al., 2002. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy., 46, 2720–2722. https://doi.org/https://doi.org/10.1128/AAC.46.8.2720-2722.2002
  • Rabahi, M.F., et al., 2017. Tuberculosis treatment. Jornal brasileiro de pneumologia, 43 (6), 472–486.
  • Rodenak-Kladniew, B., et al., 2017. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids surf B Biointerfaces, 154, 123–132.
  • Rodrigues, D.F., et al., 2020. Novel Eudragit® -based polymeric nanoparticles for sustained release of simvastatin. Brazilian journal of pharmaceutical sciences, 56, 1–12. https://doi.org/https://doi.org/10.1590/s2175-97902019000418363
  • Sato, M.R., et al., 2017. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug design, development and therapy, 11, 909–921.
  • Sato, M.R., et al., 2019. Copper(II) complex-loaded castor oil-based nanostructured lipid carriers used against Mycobacterium tuberculosis: development, characterisation, in vitro and in vivo biological assays. Die pharmazie, 74, 715–720. https://doi.org/https://doi.org/10.1691/ph.2019.9110
  • Schaffazick, S.R., et al., 2003. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Química nova, 26 (5), 726–737.
  • Shams, T., et al., 2018. Electrosprayed microparticles for intestinal delivery of prednisolone. Journal of the royal society interface, 15 (145), 20180491.
  • Silva Melo, C., da Silva Cunha Junior, A., and Ligório Fialho, S., 2012. Formas farmacêuticas poliméricas para a administração de peptídeos e proteínas terapêuticos. Journal of basic and applied pharmaceutical sciences revista de ciências farmacêuticas básica e aplicada, 33, 469–477.
  • Silva, P.B., et al., 2021. Highlights regarding the use of metallic nanoparticles against pathogens considered a priority by the world health organization. Current medicinal chemistry, 28 (10), 1906–1956.
  • Silva, P.B., et al., 2015. A nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II) complexes. Molecules, 20, 22534–22545.
  • Silva, P.B., et al., 2016. Nanotechnology-based drug delivery systems for treatment of tuberculosis-a review. Journal of biomedical nanotechnology., 12, 241–260.
  • Singh, N., et al., 2017. Chapter 27 – drug delivery: advancements and challenges. Nanostructures for drug delivery, 9780323461436, 865–886. https://doi.org/https://doi.org/10.1016/B978-0-323-46143-6.00027-0
  • Singh, R., and Lillard, J.W., 2009. Nanoparticle-based targeted drug delivery. Experimental and molecular pathology, 86, 215–223.
  • Toledo, C., et al., 2021. Binary medical nanofluids by combination of polymeric Eudragit nanoparticles for vehiculization of tobramycin and resveratrol: antimicrobial, hemotoxicity and protein corona studies. Journal of pharmaceutical sciences, 110, 1739–1748.
  • Ying, X.Y., et al., 2011. Solid lipid nanoparticles modified with chitosan oligosaccharides for the controlled release of doxorubicin. Carbohydrate polymers., 84 (4), 1357–1364.
  • Yoshida, T., et al., 2013. pH- and ion-sensitive polymers for drug delivery. Expert opinion on drug delivery, 10, 1497–1513.
  • Zeiger, E., 2019. The test that changed the world: the Ames test and the regulation of chemicals. Mutation research. Genetic toxicology and environmental mutagenesis, 841, 43–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.