121
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Vinblastine loaded on graphene quantum dots and its anticancer applications

, , , , &
Pages 239-251 | Received 13 Sep 2021, Accepted 25 Mar 2022, Published online: 18 Apr 2022

References

  • Agrawal, K., 2007. Vinblastine. In S. J. Ennaand, D. B. Bylund (Eds.), xPharm: the comprehensive pharmacology reference. New York: Elsevier, 1–4.
  • Al-Ani, L.A., et al., 2020. The impact of curcumin-graphene based nanoformulation on cellular interaction and redox-activated apoptosis: an in vitro colon cancer study. Heliyon, 6 (11), e05360.
  • Amiri, B., et al., 2018. Delivery of vinblastine-containing niosomes results in potent in vitro/in vivo cytotoxicity on tumor cells. Drug development and industrial pharmacy, 44 (8), 1371–1376.
  • Aspland, S.E., et al., 2006. Kinase-mediated trapping of bi-functional conjugates of paclitaxel or vinblastine with thymidine in cancer cells. Bioorganic & medicinal chemistry letters, 16 (19), 5194–5198.
  • Balcioglu, M., Rana, M., and Yigit, M., 2013. Doxorubicin loading on graphene oxide, iron oxide and gold nanoparticle hybrid. Journal of materials chemistry, 1, 6187–6193.
  • Bánóczi, Z., et al., 2010. Synthesis and in vitro antitumor effect of vinblastine derivative-oligoarginine conjugates. Bioconjugate chemistry, 21 (11), 1948–1955.
  • Burns, J. H., 1972. Vinblastine sulfate. In K. Florey (Ed.), Analytical profiles of drug substances (Vol. 1). USA: Academic Press, 443–462.
  • Chhabra, V.A., et al., 2018. Synthesis and spectroscopic studies of functionalized graphene quantum dots with diverse fluorescence characteristics. RSC advances, 8 (21), 11446–11454.
  • Chong, Y., et al., 2014. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials, 35 (19), 5041–5048.
  • Dandamudi, S., et al., 2009. External magnet improves antitumor effect of vinblastine and the suppression of metastasis. Cancer science, 100 (8), 1537–1543.
  • Di, J., et al., 2021. Size, shape, charge and “stealthy” surface: carrier properties affect the drug circulation time in vivo. Asian journal of pharmaceutical sciences, 16 (4), 444–458.
  • Efferth, T., et al., 2004. Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron. Free radical biology & medicine, 37 (7), 998–1009.
  • Fang, C., et al., 2006. In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. European journal of pharmaceutical sciences, 27 (1), 27–36.
  • Guo, P., et al., 2018. The effect of size and shape of RNA nanoparticles on biodistribution. Molecular therapy, 26 (3), 784–792.
  • Hadad, C., et al., 2021. Graphene quantum dots: from efficient preparation to safe renal excretion. Nano research, 14 (3), 674–683.
  • Hatamie, S., et al., 2015. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Materials science and engineering: C, 55, 482–489.
  • Huang, K.S., et al., 2019. Microfluidic synthesis of vinblastine-loaded multifunctional particles for magnetically responsive controlled drug release. Pharmaceutics, 11 (5), 212.
  • Li, F., Zhao, C., and Wang, L., 2014. Molecular-targeted agents combination therapy for cancer: developments and potentials. International journal of cancer, 134 (6), 1257–1269.
  • Li, J., et al., 2009. Clinical pharmacokinetics and exposure-toxicity relationship of a folate-vinca alkaloid conjugate EC145 in cancer patients. Journal of clinical pharmacology, 49 (12), 1467–1476.
  • Li, Z., Tozer, T., and Alisaraie, L., 2016. Molecular dynamics studies for optimization of noncovalent loading of vinblastine on single-walled carbon nanotube. The journal of physical chemistry C, 120 (7), 4061–4070.
  • Lin, C.J., et al., 2019. High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small, 15 (41), e1902641.
  • Lin, L., et al., 2014. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC trends in analytical chemistry, 54, 83–102.
  • Luqmani, Y.A., 2005. Mechanisms of drug resistance in cancer chemotherapy. Medical principles and practice: international journal of the Kuwait university, health science Centre, 14 (Suppl 1), 35–48.
  • Marinina, J., et al., 2000. Stabilization of vinca alkaloids encapsulated in poly(lactide-co-glycolide) microspheres. Pharmaceutical research, 17 (6), 677–683.
  • Maswadeh, H., et al., 2000. Encapsulation of vinblastine into new liposome formulations prepared from Triticum (wheat germ) lipids and its activity against human leukemic cell lines. Anticancer research, 20 (6b), 4385–4390.
  • Maswadeh, H., et al., 2002. In-vitro cytotoxic/cytostatic activity of anionic liposomes containing vinblastine against leukaemic human cell lines. The journal of pharmacy and pharmacology, 54 (2), 189–196.
  • Mollaamin, F., Monajjemi, M., and Mehrzad, J., 2014. Molecular modeling investigation of an anti-cancer agent joint to SWCNT using theoretical methods. Fullerenes, nanotubes and carbon nanostructures, 22 (8), 738–751.
  • Noble, C.O., et al., 2009. Characterization of highly stable liposomal and immunoliposomal formulations of vincristine and vinblastine. Cancer chemotherapy and pharmacology, 64 (4), 741–751.
  • Pardo, J., and Peng, Z., 2018. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules, 23 (2), 378–398.
  • Qiu, J., et al., 2015. Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems. International journal of nanomedicine, 10, 6709–6724.
  • Radakovic, A., and Boger, D., 2019. Ultra-potent vinblastine analogues improve on-target activity of the parent microtubulin-targeting compound. Bioorganic & medicinal chemistry letters, 29 (11), 1370–1374.
  • Ribatti, D., et al., 2003. Vinblastine inhibits the angiogenic response induced by adrenomedullin in vitro and in vivo. Oncogene, 22 (41), 6458–6461.
  • Sahu, D., et al., 2016. In vitro cytotoxicity of nanoparticles: a comparison between particle size and cell type. Journal of nanoscience, 2016, 1–9.
  • Shafeeyan, M.S., et al., 2010. A review on surface modification of activated carbon for carbon dioxide adsorption. Journal of analytical and applied pyrolysis, 89 (2), 143–151.
  • Some, S., et al., 2014. Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Scientific reports, 4, 6314.
  • Vlahov, I.R., et al., 2006. Design and regioselective synthesis of a new generation of targeted chemotherapeutics. Part 1: EC145, a folic acid conjugate of desacetylvinblastine monohydrazide. Bioorganic & medicinal chemistry letters, 16 (19), 5093–5096.
  • Zhang, X., et al., 2012. Preparation and physicochemical properties of vinblastine microparticles by supercritical antisolvent process. International journal of molecular sciences, 13 (10), 12598–12607.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.