149
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Dual Vinorelbine bitartrate and Resveratrol loaded polymeric aqueous core nanocapsules for synergistic efficacy in breast cancer

, , &
Pages 299-313 | Received 30 Dec 2021, Accepted 22 Apr 2022, Published online: 16 May 2022

References

  • Agrawal, P., et al., 2017. TPGS-chitosan cross-linked targeted nanoparticles for effective brain cancer therapy. Materials science and engineering: C, 74, 167–176.
  • Anarjan, N., et al., 2015. Effects of homogenization process parameters on physicochemical properties of astaxanthin nanodispersions prepared using a solvent-diffusion technique. International journal of nanomedicine, 10, 1109–1118.
  • Anton, N., et al., 2009. Aqueous-core lipid nanocapsules for encapsulating fragile hydrophilic and/or lipophilic molecules. Langmuir: the ACS journal of surfaces and colloids, 25 (19), 11413–11419.
  • Ashley, J.D., et al., 2016. Dual carfilzomib and doxorubicin–loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Molecular cancer therapeutics, 15 (7), 1452–1459.
  • Bray, F., et al., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A cancer journal for clinicians, 0, 1–31.
  • Budhian, A., Siegel, S.J., and Winey, K.I., 2007. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. International journal of pharmaceutics, 336 (2), 367–375.
  • Chen, S., et al., 2016. Curcumin based combination therapy for anti-breast cancer: from in vitro drug screening to in vivo efficacy evaluation. Frontiers of chemical science and engineering, 10 (3), 383–388.
  • Cosco, D., et al., 2015. Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response. European journal of pharmaceutics and biopharmaceutics, 89, 30–39.
  • De La Lastra, C. A., and Villegas, I., 2007. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochemical society transactions, 35 (Pt 5), 1156–1160.
  • Deepika, D., et al., 2019. Intranasal drug delivery of frovatriptan succinate loaded polymeric nanoparticles for brain targeting. Journal of pharmaceutical sciences, 108 (2), 851–859.
  • Dewangan, H.K., et al., 2018b. Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery Carriers. International journal of biological macromolecules, 111, 804–812.
  • Dewangan, H.K., et al., 2018a. Hepatitis B antigen loaded biodegradable polymeric nanoparticles: formulation optimization and in-vivo immunization in BALB/c mice. Current drug delivery, 15 (8), 1204–1215.
  • Dewangan, H.K., et al., 2022. Optimisation and evaluation of Gymnema sylvestre extract loaded polymeric nanoparticles for enhancement of in vivo efficacy and reduction of toxicity. Journal of microencapsulation. https://doi.org/https://doi.org/10.1080/02652048.2022.2051625
  • Drummond, D.C., et al., 2009. Improved pharmacokinetics and efficacy of a highly stable nanoliposomal vinorelbine. Journal of pharmacology and experimental therapeutics, 328 (1), 321–330.
  • Emanuela, M., et al., 2018. Vinca alkaloids and analogues as anti-cancer agents: looking back, peering ahead. Bioorganic & medicinal chemistry letters, 28 (17), 2816–2826.
  • Feczkó, T., et al., 2011. Influence of process conditions on the mean size of PLGA nanoparticles. Chemical engineering and processing: process intensification, 50 (8), 846–853.
  • Goa, K.L., and Faulds, D., 1994. Vinorelbine. A review of its pharmacological properties and clinical use in cancer chemotherapy. Drugs & aging, 5 (3), 200–234.
  • Greco, F., and Vicent, M.J., 2009. Combination therapy: opportunities and challenges for polymer–drug conjugates as anticancer nanomedicines. Advanced drug delivery reviews, 61 (13), 1203–1213.
  • Hajhashemi, V., et al., 2001. Toxicological studies on an anticancer drug (HESA-A) with marine origin. Medical journal of islamic academy of sciences, 14, 145–149.
  • Ivanov, S., et al., 2012. In vivo toxicity of intravenously administered silica and silicon nanoparticles. Materials, 5 (10), 1873–1889.
  • Joshi, S.A., Chavhan, S.S., and Sawant, K.K., 2010. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. European journal of pharmaceutics and biopharmaceutics, 76 (2), 189–199.
  • Kashif, M., et al., 2015. In vitro discovery of promising anti-cancer drug combinations using iterative maximisation of a therapeutic index. Scientific reports, 5 (1), 14118.
  • Kothamasu, P., et al., 2012. Nanocapsules: the weapons for novel drug delivery systems. BioImpacts, 2 (2), 71–81.
  • Kou, X., et al., 2013. Natural products for cancer prevention associated with Nrf2–ARE pathway. Food science and human wellness, 2 (1), 22–28.
  • Kreidieh, F.Y., Moukadem, H.A., and El Saghir, N.S., 2016. Overview, prevention and management of chemotherapy extravasation. World journal of clinical oncology, 7 (1), 87–97.
  • Kulkarni, S.A., and Feng, S.-S., 2013. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharmaceutical research, 30 (10), 2512–2522.
  • Kushwaha, A.K., et al., 2013. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. BioMed research international, 2013, 1–9.
  • Li, Y., et al., 2012. A novel active targeting preparation, Vinorelbine Tartrate (VLBT) encapsulated by folate-conjugated Bovine Serum Albumin (BSA) nanoparticles: preparation, characterization and in vitro release study. Materials, 5 (11), 2403–2422.
  • Lu, D., et al., 2015. Anticancer drug combinations, studies from different pathways. Cell & developmental biology, 04 (03), 2.
  • Mainardes, R.M., and Evangelista, R.C., 2005. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. International journal of pharmaceutics, 290 (1–2), 137–144.
  • Maurya, L., et al., 2018a. Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): Formulation development, optimization and in vitro characterization. Current drug delivery, 15 (8), 1135–1145.
  • Maurya, L., et al., 2018b. Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophillic vinorelbine bitartrate: preparation, optimization, characterization and in vitro safety assessment for intravenous administration. Current drug delivery, 15 (9), 1284–1293.
  • Mayer, L.D., et al., 2006. Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice. Molecular cancer therapeutics, 5 (7), 1854–1863.
  • Mishra, B., Padaliya, R., and Patel, R.R., 2017. Exemestane encapsulated vitamin E-TPGS–polymeric nanoparticles: preparation, optimization, characterization, and in vitro cytotoxicity assessment. Artificial cells, nanomedicine, and biotechnology, 45 (3), 522–534.
  • Mishra, A., Vuddanda, P.R., and Singh, S., 2014. Intestinal lymphatic delivery of praziquantel by solid lipid nanoparticles: formulation design, in vitro and in vivo studies. Journal of nanotechnology, 2014, 1–12.
  • Mora-Huertas, C., Fessi, H., and Elaissari, A., 2010. Polymer-based nanocapsules for drug delivery. International journal of pharmaceutics, 385 (1–2), 113–142.
  • Patel, R.R., et al., 2016. Highly water-soluble mast cell stabiliser-encapsulated solid lipid nanoparticles with enhanced oral bioavailability. Journal of microencapsulation, 33 (3), 209–220.
  • Seju, U., Kumar, A., and Sawant, K.K., 2011. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta biomaterialia, 7 (12), 4169–4176.
  • Sharma, V., et al., 2019. Rational design and in-vivo estimation of ivabradine hydrochloride loaded nanoparticles for management of stable angina. Journal of drug delivery science and technology, 54, 101337–101346.
  • Singh, R.P., et al., 2016. Vitamin E TPGS conjugated carbon nanotubes improved efficacy of docetaxel with safety for lung cancer treatment. Colloids and surfaces B: Biointerfaces, 141, 429–442.
  • Solanki, A.B., Parikh, J.R., and Parikh, R.H., 2007. Formulation and optimization of piroxicam proniosomes by 3-factor, 3-level Box-Behnken design. AAPS PharmSciTech, 8 (4), 43–49.
  • Tardi, P., et al., 2009. In vivo maintenance of synergistic cytarabine: daunorubicin ratios greatly enhances therapeutic efficacy. Leukemia research, 33 (1), 129–139.
  • Thummar, V.R., et al., 2016. Evaluation of in vivo antitumor activity of cleistanthin B in Swiss albino mice. Journal of traditional and complementary medicine, 6 (4), 383–388.
  • Vardhan, H., et al., 2017. Long-circulating polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for tumor targeted docetaxel delivery: formulation, optimization and in vitro characterization. European journal of pharmaceutical sciences, 99, 85–94.
  • Vassilomanolakis, M., et al., 2001. Prevention of vinorelbine phlebitis with cimetidine. Supportive care in cancer, 9 (2), 108–111.
  • Vijayakumar, M.R., et al., 2016a. Resveratrol loaded PLGA: d-α-tocopheryl polyethylene glycol 1000 succinate blend nanoparticles for brain cancer therapy. RSC advances, 6 (78), 74254–74268.
  • Vijayakumar, M.R., et al., 2016b. Trans resveratrol loaded DSPE PEG 2000 coated liposomes: an evidence for prolonged systemic circulation and passive brain targeting. Journal of drug delivery science and technology, 33, 125–135.
  • Vijayakumar, M.R., et al., 2016c. Intravenous administration of trans-resveratrol-loaded TPGS-coated solid lipid nanoparticles for prolonged systemic circulation, passive brain targeting and improved in vitro cytotoxicity against C6 glioma cell lines. RSC advances, 6 (55), 50336–50348.
  • Vijayakumar, M.R., et al., 2016d. Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids and surfaces B: Biointerfaces, 145, 479–491.
  • Vrignaud, S., et al., 2013. Aqueous core nanocapsules: a new solution for encapsulating doxorubicin hydrochloride. Drug development and industrial pharmacy, 39 (11), 1706–1711.
  • Vuddanda, P.R., et al., 2015. Development of polymeric nanoparticles with highly entrapped herbal hydrophilic drug using nanoprecipitation technique: an approach of quality by design. Pharmaceutical development and technology, 20 (5), 579–587.
  • Vuddanda, P.R., et al., 2014. Investigations on agglomeration and haemocompatibility of Vitamin E TPGS surface modified berberine chloride nanoparticles. BioMed research international, 2014, 951942.
  • Wan, F., et al., 2008. Studies on PEG-modified SLNs loading vinorelbine bitartrate (I): preparation and evaluation in vitro. International journal of pharmaceutics, 359 (1–2), 104–110.
  • Wang, F., et al., 2014. The synergistic in vitro and in vivo antitumor effect of combination therapy with salinomycin and 5-fluorouracil against hepatocellular carcinoma. PLOS one, 9 (5), e97414.
  • Wang, Y., et al., 2013. Stability of nanosuspensions in drug delivery. Journal of controlled release, 172 (3), 1126–1141.
  • You, J., et al., 2007. Preparation and characteristic of vinorelbine bitartrate-loaded solid lipid nanoparticles. International journal of pharmaceutics, 343 (1–2), 270–276.
  • Zhang, H.Y., et al., 2008. A lipid microsphere vehicle for vinorelbine: stability, safety and pharmacokinetics. International journal of pharmaceutics, 348 (1–2), 70–79.
  • Zhang, J., et al., 2013. Resveratrol protects against vinorelbine-induced vascular endothelial cell injury. Toxicology mechanisms and methods, 23 (9), 665–671.
  • Zhang, H., et al., 2011. Development and characteristics of temperature-sensitive liposomes for vinorelbine bitartrate. International journal of pharmaceutics, 414 (1–2), 56–62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.