211
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Advances in single-cell nanoencapsulation and applications in diseases

, &
Pages 481-494 | Received 17 Feb 2022, Accepted 02 Aug 2022, Published online: 23 Aug 2022

References

  • Acarregui, A., et al., 2014. Multifunctional hydrogel-based scaffold for improving the functionality of encapsulated therapeutic cells and reducing inflammatory response. Acta biomaterialia, 10 (10), 4206–4216.
  • Adabi, M., et al., 2017. Biocompatibility and nanostructured materials: applications in nanomedicine. Artificial cells, nanomedicine, and biotechnology, 45 (4), 833–842.
  • An, D., et al., 2018. Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proceedings of the national academy of sciences of the United States of America, 115 (2), E263–E272.
  • Anderson, J.M., Rodriguez, A., and Chang, D.T., 2008. Foreign body reaction to biomaterials. Seminars in immunology, 20 (2), 86–100.
  • Barnett, B.P., et al., 2011. Synthesis of magnetic resonance-, X-ray- and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics. Nature protocols, 6 (8), 1142–1151.
  • Basta, G., et al., 2011. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes care, 34 (11), 2406–2409.
  • Basu, S., et al., 2019. Estimation of global insulin use for type 2 diabetes, 2018–30: a microsimulation analysis. The lancet. Diabetes & endocrinology, 7 (1), 25–33.
  • Beck, J., et al., 2007. Islet encapsulation: strategies to enhance islet cell functions. Tissue engineering, 13 (3), 589–599.
  • Brown, B.N., et al., 2012. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials, 33 (15), 3792–3802.
  • Carlsson, P., et al., 2018. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus. American journal of transplantation : official journal of the American society of transplantation and the American society of transplant surgeons, 18 (7), 1735–1744.
  • Chan, W., et al., 2017. Cancer: approaches from nanoscience and technology approaches. ACS nano, 11 (5), 4375–4376.
  • Chander, V., Singh, A.K., and Gangenahalli, G., 2018. Cell encapsulation potential of chitosan-alginate electrostatic complex in preventing natural killer and CD8(+) cell-mediated cytotoxicity: an in vitro experimental study. Journal of microencapsulation, 35 (6), 522–532.
  • Chang, R., et al., 2017. Nanoporous immunoprotective device for stem-cell-derived beta-cell replacement therapy. ACS nano, 11 (8), 7747–7757.
  • Chavez, J.C., Bachmeier, C., and Kharfan-Dabaja, M.A., 2019. CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Therapeutic advances in hematology, 10, 2040620719841581.
  • Chen, Z., Hu, Q., and Gu, Z., 2018. Leveraging engineering of cells for drug delivery. Accounts of chemical research, 51 (3), 668–677.
  • Choi, D., et al., 2017. Cytoprotective self-assembled RGD peptide nanofilms for surface modification of viable mesenchymal stem cells. Chemistry of materials, 29 (5), 2055–2065.
  • Cruise, G.M., et al., 1999. In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes. Cell transplantation, 8 (3), 293–306.
  • Cuccione, E., et al., 2020. Multicolor spectral photon counting CT monitors and quantifies therapeutic cells and their encapsulating scaffold in a model of brain damage. Nanotheranostics, 4 (3), 129–141.
  • Davis, M.S., et al., 2019. Alginate encapsulation for bupivacaine delivery and mesenchymal stromal cell immunomodulatory cotherapy. Journal of inflammation research, 12, 87–97.
  • De Matteis, V., et al., 2019. Encapsulation of thermo-sensitive lauric acid in silica shell: a green derivate for chemo-thermal therapy in breast cancer cell. Molecules, 24 (11), 2034.
  • Desai, T. and Shea, L.D., 2017. Advances in islet encapsulation technologies. Nature reviews. Drug discovery, 16 (5), 338–350.
  • Desai, T.A., et al., 2004. Nanoporous microsystems for islet cell replacement. Advanced drug delivery reviews, 56 (11), 1661–1673.
  • DeSelm, C.J., et al., 2017. CAR T-cell therapy for pancreatic cancer. Journal of surgical oncology, 116 (1), 63–74.
  • Dufrane, D., Goebbels, R.M., and Gianello, P., 2010. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation, 90 (10), 1054–1062.
  • Elliott, R.B., et al., 2005. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplantation proceedings, 37 (8), 3505–3508.
  • Elliott, R.B., et al., 2007. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation, 14 (2), 157–161.
  • Espona-Noguera, A., et al., 2019. Review of advanced hydrogel-based cell encapsulation systems for insulin delivery in type 1 diabetes mellitus. Pharmaceutics, 11 (11), 597.
  • Gray, A., et al., 2015. Identification of IL-1beta and LPS as optimal activators of monolayer and alginate-encapsulated mesenchymal stromal cell immunomodulation using design of experiments and statistical methods. Biotechnology progress, 31 (4), 1058–1070.
  • Gray, A., et al., 2016. The effect of local anesthetic on pro-inflammatory macrophage modulation by mesenchymal stromal cells. International immunopharmacology, 33, 48–54.
  • Günzburg, W.H. and Salmons, B., 2005. Use of cell therapy as a means of targeting chemotherapy to inoperable pancreatic cancer. Acta biochimica polonica, 52 (3), 601–607.
  • Guo, J., et al., 2022. Cancer vaccines from cryogenically silicified tumour cells functionalized with pathogen-associated molecular patterns. Nature biomedical engineering, 6 (1), 19–31.
  • Guo, X., et al., 2020. Electron-accepting micelles deplete reduced nicotinamide adenine dinucleotide phosphate and impair two antioxidant cascades for ferroptosis-induced tumor eradication. ACS nano, 14 (11), 14715–14730.
  • Gurruchaga, H., et al., 2015. Advances in cell encapsulation technology and its application in drug delivery. Expert opinion on drug delivery, 12 (8), 1251–1267.
  • Hong, Y., et al., 2020. Combination therapy of lung cancer using layer-by-layer cisplatin prodrug and curcumin co-encapsulated nanomedicine. Drug design, development and therapy, 14, 2263–2274.
  • Kim, B.J., et al., 2018. Strategic advances in formation of cell-in-shell structures: from syntheses to applications. Advanced materials, 30 (14), 1706063.
  • Kim, J.Y., et al., 2016. Artificial spores: cytocompatible coating of living cells with plant-derived pyrogallol. Chemistry, an Asian journal, 11 (22), 3183–3187.
  • Kleinschmidt, K., et al., 2011. Alginate encapsulated human mesenchymal stem cells suppress syngeneic glioma growth in the immunocompetent rat. Journal of microencapsulation, 28 (7), 621–627.
  • Komatsu, H., et al., 2017. Oxygen environment and islet size are the primary limiting factors of isolated pancreatic islet survival. PLoS one, 12 (8), e183780.
  • Kong, Y., et al., 2016. Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing. International journal of nanomedicine, 11, 2543–2555.
  • Kroshus, T.J., et al., 1995. Antibody removal by column immunoabsorption prevents tissue injury in an ex vivo model of pig-to-human xenograft hyperacute rejection. The journal of surgical research, 59 (1), 43–50.
  • Li, W., et al., 2015. The effect of layer-by-layer assembly coating on the proliferation and differentiation of neural stem cells. ACS applied materials & interfaces, 7 (5), 3018–3029.
  • Liang, K., et al., 2016. Metal-organic framework coatings as cytoprotective exoskeletons for living cells. Advanced materials (Deerfield Beach, FL, 28 (36), 7910–7914.
  • Liaudanskaya, V., et al., 2015. Assessing the impact of electrohydrodynamic jetting on encapsulated cell viability, proliferation, and ability to self-assemble in three-dimensional structures. Tissue engineering. Part C, methods, 21 (6), 631–638.
  • Lim, F. and Sun, A.M., 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science (New York, NY), 210 (4472), 908–910.
  • Link, T.W., et al., 2011. MR-guided portal vein delivery and monitoring of magnetocapsules: assessment of physiologic effects on the liver. Journal of vascular and interventional radiology : JVIR, 22 (9), 1335–1340.
  • Liu, J., et al., 2017. Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in B cell malignancies. Journal of hematology & oncology, 10 (1), 35.
  • Loscertales, I.G., et al., 2002. Micro/nano encapsulation via electrified coaxial liquid jets. Science (New York, NY), 295 (5560), 1695–1698.
  • Lovett, M., et al., 2009. Vascularization strategies for tissue engineering. Tissue engineering. Part B, reviews, 15 (3), 353–370.
  • Lucchinetti, E., et al., 2012. Antiproliferative effects of local anesthetics on mesenchymal stem cells: potential implications for tumor spreading and wound healing. Anesthesiology, 116 (4), 841–856.
  • Ludwig, B., et al., 2013. Transplantation of human islets without immunosuppression. Proceedings of the national academy of sciences of the United States of America, 110 (47), 19054–19058.
  • Lum, Z.P., et al., 1991. Prolonged reversal of diabetic state in NOD mice by xenografts of microencapsulated rat islets. Diabetes, 40 (11), 1511–1516.
  • Ma, M., et al., 2013. Core-shell hydrogel microcapsules for improved islets encapsulation. Advanced healthcare materials, 2 (5), 667–672.
  • Mansouri, S., et al., 2011. Investigation of layer-by-layer assembly of polyelectrolytes on fully functional human red blood cells in suspension for attenuated immune response. Biomacromolecules, 12 (3), 585–592.
  • Matsusaki, M., et al., 2015. Development of full-thickness human skin equivalents with blood and lymph-like capillary networks by cell coating technology. Journal of biomedical materials research. Part A, 103 (10), 3386–3396.
  • Meng, X., et al., 2019. Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy. Nano letters, 19 (11), 7866–7876.
  • Miranda, P.M., et al., 2013. Human islet mass, morphology, and survival after cryopreservation using the Edmonton protocol. Islets, 5 (5), 188–195.
  • Montanucci, P., et al., 2015. Insights in behavior of variably formulated alginate-based microcapsules for cell transplantation. BioMed research international, 2015, 965804–965811.
  • Neufeld, T., et al., 2013. The efficacy of an immunoisolating membrane system for islet xenotransplantation in minipigs. PLoS one, 8 (8), e70150.
  • Orive, G., et al., 2002. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials, 23 (18), 3825–3831.
  • Pagliuca, F.W., et al., 2014. Generation of functional human pancreatic beta cells in vitro. Cell, 159 (2), 428–439.
  • Park, T., et al., 2017. Artificial spores: immunoprotective nanocoating of red blood cells with supramolecular ferric ion-tannic acid complex. Polymers-Basel, 9 (12), 140.
  • Rabanel, J.M., et al., 2009. Progress technology in microencapsulation methods for cell therapy. Biotechnology progress, 25 (4), 946–963.
  • Ricordi, C. and Strom, T.B., 2004. Clinical islet transplantation: advances and immunological challenges. Nature reviews. Immunology, 4 (4), 259–268.
  • Rosenblum, D., et al., 2018. Progress and challenges towards targeted delivery of cancer therapeutics. Nature communications, 9 (1), 1410.
  • Sakata, N., et al., 2012. Encapsulated islets transplantation: past, present and future. World journal of gastrointestinal pathophysiology, 3 (1), 19–26.
  • Satsangi, A., et al., 2015. Synthesis of a novel, sequentially active-targeted drug delivery nanoplatform for breast cancer therapy. Biomaterials, 59, 88–101.
  • Schulz, T.C., 2015. Concise review: manufacturing of pancreatic endoderm cells for clinical trials in type 1 diabetes. Stem cells translational medicine, 4 (8), 927–931.
  • Schweicher, J., Nyitray, C., and Desai, T.A., 2014. Membranes to achieve immunoprotection of transplanted islets. Frontiers in bioscience (Landmark edition), 19 (1), 49–76.
  • Schwenter, F., et al., 2011. Cell encapsulation technology as a novel strategy for human anti-tumor immunotherapy. Cancer gene therapy, 18 (8), 553–562.
  • Shapiro, A.M., et al., 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. New England journal of medicine, 343 (4), 230–238.
  • Shi, J., et al., 2017. Cancer nanomedicine: progress, challenges and opportunities. Nature reviews. Cancer, 17 (1), 20–37.
  • Solomon, B.J., et al., 2015. A first-time-in-human phase I clinical trial of bispecific antibody-targeted, paclitaxel-packaged bacterial minicells. PLoS one, 10 (12), e144559.
  • Soon-Shiong, P., et al., 1994. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet, 343 (8903), 950–951.
  • Sung, H., et al., 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A cancer journal for clinicians, 71 (3), 209–249.
  • Tuch, B.E., et al., 2009. Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes care, 32 (10), 1887–1889.
  • Tzakis, A.G., et al., 1990. Pancreatic islet transplantation after upper abdominal exenteration and liver replacement. Lancet (London, England), 336 (8712), 402–405.
  • Vegas, A.J., et al., 2016. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nature medicine, 22 (3), 306–311.
  • Wang, B., et al., 2014. Antigenically shielded universal red blood cells by polydopamine-based cell surface engineering. Chemical science, 5 (9), 3463–3468.
  • Wang, J.J., Lei, K.F., and Han, F., 2018. Tumor microenvironment: recent advances in various cancer treatments. European review for medical and pharmacological sciences, 22 (12), 3855–3864.
  • Wang, P., et al., 2018. Poly-L-ornithine/fucoidan-coated calcium carbonate microparticles by layer-by-layer self-assembly technique for cancer theranostics. Journal of materials science. Materials in medicine, 29 (5), 68.
  • White, A.M., et al., 2020. Engineering strategies to improve islet transplantation for type 1 diabetes therapy. ACS biomaterials science & engineering, 6 (5), 2543–2562.
  • Witika, B.A., et al., 2020. Biocompatibility of biomaterials for nanoencapsulation: current approaches. Nanomaterials – Basel, 10 (9), 1649.
  • Wolters, G.H., et al., 1991. A versatile alginate droplet generator applicable for microencapsulation of pancreatic islets. Journal of applied biomaterials : an official journal of the society for biomaterials, 3 (4), 281–286.
  • Xue, C., et al., 2020. Tumor microenvironment-activatable Fe-doxorubicin preloaded amorphous CaCO3 nanoformulation triggers ferroptosis in target tumor cells. Science advances, 6 (18), x1346.
  • Yang, J., et al., 2016. Single mammalian cell encapsulation by in situ polymerization. Journal of materials chemistry. B, 4 (47), 7662–7668.
  • Yang, J., et al., 2017. Nanoencapsulation of individual mammalian cells with cytoprotective polymer shell. Biomaterials, 133, 253–262.
  • Ye, Y., et al., 2016. Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Advanced materials (Deerfield Beach, FL), 28 (16), 3115–3121.
  • Youn, W., et al., 2017. Cytoprotective encapsulation of individual Jurkat T cells within durable TiO2 shells for T-cell therapy. Angewandte chemie (International ed. in English), 56 (36), 10702–10706.
  • Zhao, R., et al., 2016. A drug-free tumor therapy strategy: cancer-cell-targeting calcification. Angewandte chemie (International ed. in English), 55 (17), 5225–5229.
  • Zhao, S., et al., 2016. Conformal nanoencapsulation of allogeneic T cells mitigates graft-versus-host disease and retains graft-versus-leukemia activity. ACS nano, 10 (6), 6189–6200.
  • Zheng, D.W., et al., 2017. Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano letters, 17 (1), 284–291.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.