70
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Enhancement of ocular anti-glaucomic activity of agomelatine through fabrication of hyaluronic acid modified-elastosomes: formulation, statistical optimisation, in vitro characterisation, histopathological study, and in vivo assessment

, &
Pages 423-441 | Received 09 Jan 2023, Accepted 13 May 2023, Published online: 31 May 2023

References

  • Abdelbary, A.A., Abd-Elsalam, W.H., and Al-Mahallawi, A.M., 2016. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: in vitro characterization, ex vivo permeation and in vivo safety assessment. International journal of pharmaceutics, 513 (1–2), 688–696.
  • Abdelbary, G., 2011. Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharmaceutical development and technology, 16 (1), 44–56.
  • Abdelbary, G.A. and Aburahma, M.H., 2015. Oro-dental mucoadhesive proniosomal gel formulation loaded with lornoxicam for management of dental pain. Journal of liposome research, 25 (2), 107–121.
  • Abdellatif, M.M., et al., 2022. Sertaconazole-nitrate-loaded leciplex for treating keratomycosis: optimization using D-optimal design and in vitro, ex vivo, and in vivo studies. Pharmaceutics, 14 (10), 2215.
  • Abd-Elsalam, W.H. and ElKasabgy, N.A., 2019. Mucoadhesive olaminosomes: a novel prolonged release nanocarrier of agomelatine for the treatment of ocular hypertension. International journal of pharmaceutics, 560, 235–245.
  • Addo, Evelyn, Bamiro, Oluyemisi A., and Siwale, Rodney, 2016. Anatomy of the eye and common diseases affecting the eye. Ocular drug delivery: advances, challenges and applications. USA: Springer nature, 11–25.
  • Ahuja, M., Verma, P., and Bhatia, M., 2015. Preparation and evaluation of chitosan–itraconazole co-precipitated nanosuspension for ocular delivery. Journal of experimental nanoscience, 10 (3), 209–221.
  • Albash, R., et al., 2022. Repurposing levocetirizine hydrochloride loaded into cationic ceramide/phospholipid composite (CCPCs) for management of alopecia: central composite design optimization, in-silico and in-vivo studies. Drug delivery, 29 (1), 2784–2795.
  • Albash, R., et al., 2019. Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: in-vitro characterization, ex-vivo permeation and in-vivo assessment. International journal of nanomedicine, 14, 6555–6574.
  • Alhakamy, N.A., et al., 2022. Development and optimization of hyaluronic acid-poloxamer in-situ gel loaded with voriconazole cubosomes for enhancement of activity against ocular fungal infection. Gels, 8 (4), 241.
  • Ammar, H.O., et al., 2011. Proniosomes as a carrier system for transdermal delivery of tenoxicam. International journal of pharmaceutics, 405 (1–2), 142–152.
  • Ammar, H.O., et al., 2009. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech, 10 (3), 808–819.
  • Aziz, D.E., Abdelbary, A.A., and Elassasy, A.I., 2019. Investigating superiority of novel bilosomes over niosomes in the transdermal delivery of diacerein: in vitro characterization, ex vivo permeation and in vivo skin deposition study. Journal of liposome research, 29 (1), 73–85.
  • Barbosa-Alfaro, D., et al., 2021. Dexamethasone PLGA microspheres for sub-Tenon administration: influence of sterilization and tolerance studies. Pharmaceutics, 13 (2), 228.
  • Baydoun, L., et al., 2004. New surface-active polymers for ophthalmic formulations: evaluation of ocular tolerance. European journal of pharmaceutics and biopharmaceutics, 58 (1), 169–175.
  • Bessone, C.D.V., et al., 2021. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. European journal of pharmaceutical sciences, 160, 105748.
  • Casey-Power, S., et al., 2022. Hyaluronic acid: its versatile use in ocular drug delivery with a specific focus on hyaluronic acid-based polyelectrolyte complexes. Pharmaceutics, 14 (7), 1479.
  • Charcosset, C., et al., 2015. Preparation of liposomes at large scale using the ethanol injection method: effect of scale-up and injection devices. Chemical engineering research and design, 94, 508–515.
  • Dahiya, S., et al., 2018. Conjugation of epigallocatechin gallate and piperine into a zein nanocarrier: implication on antioxidant and anticancer potential. Advances in natural sciences: nanoscience and nanotechnology, 9 (3), 035011.
  • Dai, Y., et al., 2013. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. International journal of nanomedicine, 8, 1921–1933.
  • de Bodinat, C., et al., 2010. Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nature reviews drug discovery, 9 (8), 628–642.
  • Doshi, U. and Xu, J., 2009. Effect of viscosity, surface tension and mucoadhesion on ocular residence time of lubricant eye drops. Investigative ophthalmology & visual science, 50, 4641.
  • Draize, J.H., Woodard, G., and Calvery, H.O., 1944. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. Journal of pharmacology and experimental therapeutics, 82, 377–390.
  • Dsouza, L., et al., 2021. Derma roller mediated transdermal delivery of tizanidine invasomes for the management of skeletal muscle spasms. European journal of pharmaceutical sciences, 165, 105920.
  • El-Mahrouk, G., Aboul-Einien, M.H., and Elkasabgy, N.A., 2009. Formulation and evaluation of meloxicam orally dispersible capsules. Asian journal of pharmaceutical sciences, 4, 8–22.
  • Fahmy, A.M., et al., 2021. Statistical optimization of hyaluronic acid enriched ultradeformable elastosomes for ocular delivery of voriconazole via Box–Behnken design: in vitro characterization and in vivo evaluation. Drug delivery, 28 (1), 77–86.
  • Fouda, N.H., et al., 2018. Sustained ocular delivery of dorzolamide-HCL via proniosomal gel formulation: in-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug delivery, 25 (1), 1340–1349.
  • Ghate, D. and Edelhauser, H.F., 2006. Ocular drug delivery. Expert opinion on drug delivery, 3 (2), 275–287.
  • Gorjian, H., et al., 2021. Preparation and characterization of the encapsulated myrtle extract nanoliposome and nanoniosome without using cholesterol and toxic organic solvents: a comparative study. Food chemistry, 342, 128342.
  • Gugleva, V., et al., 2019. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system. International journal of pharmaceutics, 567, 118431.
  • Guinedi, A.S., et al., 2005. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. International journal of pharmaceutics, 306 (1–2), 71–82.
  • Gupta, P.N., et al., 2005. Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. International journal of pharmaceutics, 293 (1–2), 73–82.
  • Guter, M. and Breunig, M., 2017. Hyaluronan as a promising excipient for ocular drug delivery. European journal of pharmaceutics and biopharmaceutics, 113, 34–49.
  • Hegde, R.R., Verma, A., and Ghosh, A., 2013. Microemulsion: new insights into the ocular drug delivery. ISRN pharmaceutics, 2013, 1–11.
  • Joseph, R.R. and Venkatraman, S.S., 2017. Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine, 12 (6), 683–702.
  • Kakkar, S. and Kaur, I.P., 2011. Spanlastics—a novel nanovesicular carrier system for ocular delivery. International journal of pharmaceutics, 413 (1–2), 202–210.
  • Kapetanakis, V.V., et al., 2016. Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): a systematic review and meta-analysis. British journal of ophthalmology, 100 (1), 86–93.
  • Kassaee, S.N. and Mahboobian, M.M., 2022. Besifloxacin-loaded ocular nanoemulsions: design, formulation and efficacy evaluation. Drug delivery and translational research, 12 (1), 229–239.
  • Kaur, I.P., et al., 2012. Development and evaluation of novel surfactant-based elastic vesicular system for ocular delivery of fluconazole. Journal of ocular pharmacology and therapeutics, 28 (5), 484–496.
  • Khames, A., et al., 2019. Natamycin solid lipid nanoparticles – sustained ocular delivery system of higher corneal penetration against deep fungal keratitis: preparation and optimization. International journal of nanomedicine, 14, 2515–2531.
  • Krtalić, I., et al., 2018. D-optimal design in the development of rheologically improved in situ forming ophthalmic gel. Journal of pharmaceutical sciences, 107 (6), 1562–1571.
  • Kuno, N. and Fujii, S., 2011. Recent advances in ocular drug delivery systems. Polymers, 3 (1), 193–221.
  • Lee, B.B., et al., 2012. Surface tension of viscous biopolymer solutions measured using the du Nouy ring method and the drop weight methods. Polymer bulletin, 69 (4), 471–489.
  • Lokapur, J.S., et al., 2022. Formulation and evaluation of timolol maleate proniosomal gel for ocular drug delivery. International journal of pharmaceutical investigation, 12 (3), 386–390.
  • Londhe, V.Y. and Sharma, S., 2022. Formulation, characterization, optimization and in-vivo evaluation of methazolamide liposomal in-situ gel for treating glaucoma. Journal of drug delivery science and technology, 67, 102951.
  • Martínez-Águila, A., et al., 2016. Effect of melatonin and 5-methoxycarbonylamino-N-acetyltryptamine on the intraocular pressure of normal and glaucomatous mice. Journal of pharmacology and experimental therapeutics, 357 (2), 293–299.
  • Mishra, V. and Jain, N.K., 2014. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. International journal of pharmaceutics, 461 (1–2), 380–390.
  • Mittal, N. and Kaur, G., 2019. Investigations on polymeric nanoparticles for ocular delivery. Advances in polymer technology, 2019, 1–14.
  • Moore, J.W. and Flanner, H.H., 1996. Mathematical comparison of dissolution profiles. Pharmaceutical technology, 20, 64–74.
  • Morsi, N.M., et al., 2019. Bioactive injectable triple acting thermosensitive hydrogel enriched with nano-hydroxyapatite for bone regeneration: in-vitro characterization, Saos-2 cell line cell viability and osteogenic markers evaluation. Drug development and industrial pharmacy, 45 (5), 787–804.
  • Nadzir, M.M., et al., 2017. Size and stability of curcumin niosomes from combinations of Tween 80 and Span 80. Sains malaysiana, 46 (12), 2455–2460.
  • Nemr, A.A., El-Mahrouk, G.M., and Badie, H.A., 2021a. Development and evaluation of proniosomes to enhance the transdermal delivery of cilostazole and to ensure the safety of its application. Drug development and industrial pharmacy, 47 (3), 403–415.
  • Nemr, A.A., El-Mahrouk, G.M., and Badie, H.A., 2021b. Development and evaluation of surfactant-based elastic vesicular system for transdermal delivery of cilostazole: ex-vivo permeation and histopathological evaluation studies. Journal of liposome research, 32 (2), 159–171.
  • Nemr, A.A., El-Mahrouk, G.M., and Badie, H.A., 2022. Hyaluronic acid-enriched bilosomes: an approach to enhance ocular delivery of agomelatine via D-optimal design: formulation, in vitro characterization, and in vivo pharmacodynamic evaluation in rabbits. Drug delivery, 29 (1), 2343–2356.
  • Nowroozi, F., et al., 2018. Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iranian journal of pharmaceutical research, 17 (Suppl. 2), 1–11.
  • Ntemi, P., Walker, R.B., and Khamanga, S., 2021. Formulation, development and assessment of novel phyto-elastosomes loaded with Devil’s claw extract. Medicine.
  • Okamoto, N., et al., 2010. Preparation of ophthalmic formulations containing cilostazol as an anti-glaucoma agent and improvement in its permeability through the rabbit cornea. Journal of Oleo science, 59 (8), 423–430.
  • Omerović, N. and Vranić, E., 2020. Application of nanoparticles in ocular drug delivery systems. Health and technology, 10 (1), 61–78.
  • Owodeha-Ashaka, K., Ilomuanya, M.O., and Iyire, A., 2021. Evaluation of sonication on stability-indicating properties of optimized pilocarpine hydrochloride-loaded niosomes in ocular drug delivery. Progress in biomaterials, 10 (3), 207–220.
  • Patel, S. and Tutchenko, L., 2019. The refractive index of the human cornea: a review. Contact lens & anterior eye, 42 (5), 575–580.
  • Pescosolido, N., et al., 2015. Oral treatment with the melatonin agonist agomelatine lowers the intraocular pressure of glaucoma patients. Ophthalmic and physiological optics, 35 (2), 201–205.
  • Rathod, S., et al., 2021. Investigations on the role of edge activator upon structural transitions in Span vesicles. Colloids and surfaces A: physicochemical and engineering aspects, 627, 127246.
  • Rowland, J.M., Potter, D.E., and Reiter, R.J., 1981. Circadian rhythm in intraocular pressure: a rabbit model. Current eye research, 1 (3), 169–173.
  • Rubenicia, A.M.L., et al., 2021. Intraocular pressure reduction effect of 0.005% latanoprost eye drops in a hyaluronic acid-chitosan nanoparticle drug delivery system in albino rabbits. Translational vision science & technology, 10 (4), 2.
  • Salama, H.A., et al., 2012. Phospholipid based colloidal poloxamer-nanocubic vesicles for brain targeting via the nasal route. Colloids and surfaces B: biointerfaces, 100, 146–154.
  • Sankhyan, A. and Pawar, P.K., 2013. Metformin loaded non-ionic surfactant vesicles: optimization of formulation, effect of process variables and characterization. Daru, 21 (1), 7.
  • Sayed, S., et al., 2021. Cubogel as potential platform for glaucoma management. Drug delivery, 28 (1), 293–305.
  • Scognamiglio, I., et al., 2013. Nanocarriers for topical administration of resveratrol: a comparative study. International journal of pharmaceutics, 440 (2), 179–187.
  • Shah, J., et al., 2019. Nanoemulsion based vehicle for effective ocular delivery of moxifloxacin using experimental design and pharmacokinetic study in rabbits. Pharmaceutics, 11 (5), 230.
  • Shahab, M.S., et al., 2020. Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: in vitro, ex vivo and toxicity assessments. International journal of biological macromolecules, 163, 2392–2404.
  • Shahab, M.S., Rizwanullah, M., and Sarim Imam, S., 2022. Formulation, optimization and evaluation of vitamin E TPGS emulsified dorzolamide solid lipid nanoparticles. Journal of drug delivery science and technology, 68, 103062.
  • Singh, M., et al., 2019. Solid lipid nanoparticles for ocular delivery of isoniazid: evaluation, proof of concept and in vivo safety & kinetics. Nanomedicine, 14 (4), 465–491.
  • Sultana, Y., et al., 2006. Review of ocular drug delivery. Current drug delivery, 3 (2), 207–217.
  • Suvarna, P., et al., 2022. Voriconazole–cyclodextrin supramolecular ternary complex-loaded ocular films for management of fungal keratitis. Molecular pharmaceutics, 19 (1), 258–273.
  • Tan, Y., et al., 2013. Lecithin in mixed micelles attenuates the cytotoxicity of bile salts in Caco-2 cells. Toxicology in vitro, 27 (2), 714–720.
  • Tayel, S.A., et al., 2013. Promising ion-sensitive in situ ocular nanoemulsion gels of terbinafine hydrochloride: design, in vitro characterization and in vivo estimation of the ocular irritation and drug pharmacokinetics in the aqueous humor of rabbits. International journal of pharmaceutics, 443 (1–2), 293–305.
  • Tayel, S.A., et al., 2015. Duodenum-triggered delivery of pravastatin sodium via enteric surface-coated nanovesicular spanlastic dispersions: development, characterization and pharmacokinetic assessments. International journal of pharmaceutics, 483 (1–2), 77–88.
  • Terreni, E., et al., 2020. Assembling surfactants-mucoadhesive polymer nanomicelles (ASMP-nano) for ocular delivery of cyclosporine-A. Pharmaceutics, 12 (3), 253.
  • Tiffany, J.M., Winter, N., and Bliss, G., 1989. Tear film stability and tear surface tension. Current eye research, 8 (5), 507–515.
  • Tran, T.H., et al., 2014. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydrate polymers, 114, 407–415.
  • Verma, H., Pal, P., and Joshi, D., 2022. Formulation, development and evaluation of invasomes loaded gel for fungal treatment. Scholars academic journal of pharmacy, 11 (7), 105–108.
  • Vicario-de-la-Torre, M., et al., 2014. Design and characterization of an ocular topical liposomal preparation to replenish the lipids of the tear film. Investigative ophthalmology & visual science, 55 (12), 7839–7847.
  • Volland, C., Wolff, M., and Kissel, T., 1994. The influence of terminal gamma-sterilization on captopril containing poly (d, l-lactide-co-glycolide) microspheres. Journal of controlled release, 31 (3), 293–305.
  • Wahab, M.Y., et al., 2019. Improvement of the characteristic of polyethersulfone membrane by blending with Brij of different molecular weights. Rasayan journal of chemistry, 12 (3), 1135–1143.
  • Wang, J., et al., 2017. Novel cationic lipid nanoparticles as an ophthalmic delivery system for multicomponent drugs: development, characterization, in vitro permeation, in vivo pharmacokinetic, and molecular dynamics studies. International journal of nanomedicine, 12, 8115–8127.
  • Weng, J., Tong, H.H.Y., and Chow, S.F., 2020. In vitro release study of the polymeric drug nanoparticles: development and validation of a novel method. Pharmaceutics, 12 (8), 732.
  • Wu, Y., et al., 2019. Research progress of in-situ gelling ophthalmic drug delivery system. Asian journal of pharmaceutical sciences, 14 (1), 1–15.
  • Yadav, S., et al., 2022. Preparation and in-vitro characterization of brimonidine encapsulated polymer coated microemulsion for ocular drug delivery for the management of glaucoma. Journal of Harbin institute of technology, 54 (5), 2022.
  • Yenice, İ., et al., 2008. Hyaluronic acid coated poly-ɛ-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Experimental eye research, 87 (3), 162–167.
  • Younes, N.F., Abdel-Halim, S.A., and Elassasy, A.I., 2018. Solutol HS15 based binary mixed micelles with penetration enhancers for augmented corneal delivery of sertaconazole nitrate: optimization, in vitro, ex vivo and in vivo characterization. Drug delivery, 25 (1), 1706–1717.
  • Yue, Y., Zhao, D., and Yin, Q., 2018. Hyaluronic acid modified nanostructured lipid carriers for transdermal bupivacaine delivery: in vitro and in vivo anesthesia evaluation. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 98, 813–820.
  • Zafar, A., et al., 2022. Formulation and evaluation of moxifloxacin loaded bilosomes in-situ gel: optimization to antibacterial evaluation. Gels, 8 (7), 418.
  • Zeng, Y., et al., 2018. Thermo-sensitive gel in glaucoma therapy for enhanced bioavailability: in vitro characterization, in vivo pharmacokinetics and pharmacodynamics study. Life sciences, 212, 80–86.
  • Zhang, Y., et al., 2020. Sodium dodecyl sulfate improved stability and transdermal delivery of salidroside-encapsulated niosomes via effects on zeta potential. International journal of pharmaceutics, 580, 119183.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.