121
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Diruthenium(II-III)-ibuprofen-loaded chitosan-based microparticles and nanoparticles systems: encapsulation, characterisation, anticancer activity of the nanoformulations against U87MG human glioma cells

, , , & ORCID Icon
Pages 549-565 | Received 05 Mar 2023, Accepted 11 Sep 2023, Published online: 25 Sep 2023

References

  • Alessio, E. and Guo, Z., 2017. Metal anticancer complexes – activity, mechanism of action, future perspectives. European journal of inorganic chemistry, 2017 (12), 1539–1540. doi: 10.1002/ejic.201700196.
  • Alessio, E. and Messori, L., 2019. NAMI-A and KP1019/1339, two iconic ruthenium anticancer drug candidates face-to-face: A case story in medicinal inorganic chemistry. Molecules, 24 (10), 1995. doi: 10.3390/molecules24101995.
  • Alves, S.R., et al., 2020. Synthesis of terpolymer-lipid encapsulated diruthenium(II,III)-antiinflammatory metallodrug nanoparticles to enhance activity against glioblastoma cancer cells. Journal of inorganic biochemistry, 205, 110984. doi: 10.1016/j.jinorgbio.2019.110984.
  • Alves, S.R., et al., 2021. A novel μ-oxo-diruthenium(III,III)-ibuprofen-(4-aminopyridine) chloride derived from the diruthenium(II,III)-ibuprofen paddlewheel metallodrug shows anticancer properties. Journal of inorganic biochemistry, 225, 111596. doi: 10.1016/j.jinorgbio.2021.111596.
  • Amirthaganesan, K., et al., 2022. In vitro antifungal studies of Ruthenium (III) complex derived from chitosan Schiff bases. Materials today, 60, 1716–1720. doi: 10.1016/j.matpr.2021.12.265.
  • Andrade, A., et al., 2000. Synthesis and characterization of a diruthenium–ibuprofenato complex Comparing its anti-inflammatory activity with that of a copper(II)–ibuprofenato complex. Journal of inorganic biochemistry, 81 (1–2), 23–27. doi: 10.1016/s0162-0134(00)00106-9.
  • Ang, W.H. and Dyson, P.J., 2006. Classical and non-classical ruthenium-based anticancer drugs: towards targeted chemotherapy. European journal of inorganic chemistry, 20, 3993–4000. doi: 10.1002/ejic.200600723.
  • Baklagina, Y.G., et al., 2018. Polymorphic modifications of chitosan. Crystallography reports, 63 (3), 303–313. doi: 10.1134/S1063774518030033.
  • Benadiba, M., et al., 2010. Inhibition of C6 rat glioma proliferation by [Ru2Cl(Ibp)4] depends on changes in p21, p27, Bax/Bcl2 ratio and mitochondrial membrane potential. Journal of inorganic biochemistry, 104 (9), 928–935. doi: 10.1016/j.jinorgbio.2010.04.011.
  • Benadiba, M., et al., 2014. Growth inhibitory effects of the diruthenium-ibuprofen compound, [Ru2Cl(Ibp)4], in human glioma cells in vitro and in the rat C6 orthotopic glioma in vivo. Journal of biological inorganic chemistry, 19 (6), 1025–1035. doi: 10.1007/s00775-014-1143-4.
  • Bergamo, A., et al., 2012. Approaching tumour therapy beyond platinum drugs status of the art and perspectives of ruthenium drug candidates. Journal of inorganic biochemistry, 106 (1), 90–99. doi: 10.1016/j.jinorgbio.2011.09.030.
  • Bhumkar, R.D., and Pokharkar, V.B., 2006. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech, 7 (2), E50–E143. doi: 10.1208/pt070250.
  • Blunden, B.M., et al., 2014. Superior chemotherapeutic benefits from the ruthenium-based anti-metastatic drug NAMI‑A through conjugation to polymeric micelles. Macromolecules, 47 (5), 1646–1655. doi: 10.1021/ma402078d.
  • Boztepe, T., Castro, G.R., and León, I.E., 2021. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. International journal of pharmaceutics, 605, 120788. doi: 10.1016/j.ijpharm.2021.120788.
  • Brabec, V. and Kasparkova, J., 2018. Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents. Coordination chemistry reviews, 376, 75–94. doi: 10.1016/j.ccr.2018.07.012.
  • Braccini, I. and Pérez, S., 2001. Molecular basis of Ca2+-induced gelation in alginates and pectins: the Egg-Box model revisited. Biomacromolecules, 2 (4), 1089–1096. doi: 10.1021/bm010008g.
  • Buyana, B., et al., 2022. Nanoparticles loaded with platinum drugs for colorectal cancer therapy. International journal of molecular sciences, 23 (19), 11261. doi: 10.3390/ijms231911261.
  • Calvo, P., et al., 1997. Novel hydrophilic chitosan–polyethylene oxide nanoparticles as protein carriers. Journal of applied polymer science, 63 (1), 125–132. doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4.
  • Caprifico, A.E., et al., 2020. Overcoming the blood-brain barrier: functionalised chitosan nanocarriers. Pharmaceutics, 12 (11), 1013. doi: 10.3390/pharmaceutics12111013.
  • Coverdale, J.P.C., Laroiya-McCarron, T., and Canelón, I.R., 2019. Designing ruthenium anticancer drugs: what have we learnt from the key drug candidates? Inorganics, 7 (3), 31. doi: 10.3390/inorganics7030031.
  • Dash, M., et al., 2011. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Progress in polymer science, 36 (8), 981–1014. doi: 10.1016/j.progpolymsci.2011.02.001.
  • de Oliveira Silva, D., 2010. Perspectives for novel mixed diruthenium-organic drugs as metallopharmaceuticals in cancer therapy. Anti-cancer agents in medicinal chemistry, 10 (4), 312–323. doi: 10.2174/187152010791162333.
  • de Oliveira Silva, D., 2014. Ruthenium compounds targeting cancer therapy. In: Atta-ur-Rahman and M.I. Choudhary, eds. Frontiers in anti-cancer drug discovery. Vol. 4. United Arab Emirates: Bentham Science Publishers, 88–156.
  • El-Banna, F., et al., 2019. Chitosan as a natural copolymer with unique properties for the development of hydrogels. Applied sciences, 9, 2193. doi: 10.3390/app9112193.
  • Eslahi, M., et al., 2021. The effects of chitosan-based materials on glioma: recent advances in its applications for diagnosis and treatment. International journal of biological macromolecules, 168, 124–129. doi: 10.1016/j.ijbiomac.2020.11.180.
  • Fischer, B., et al., 2014. Poly(lactic acid) nanoparticles of the lead anticancer ruthenium compound KP1019 and its surfactant-mediated activation. Dalton transactions, 43 (3), 1096–1104. doi: 10.1039/c3dt52388h.
  • Gao, J., et al., 2018. High performance shape-stabilized phase change material with nanoflower-like wrinkled mesoporous silica encapsulating polyethylene glycol: preparation and thermal properties. Nanomaterials, 8 (6), 385. doi: 10.3390/nano8060385.
  • Garg, U., et al., 2019. Current advances in chitosan nanoparticles based drug delivery and targeting. Advanced pharmaceutical bulletin, 9 (2), 195–204. doi: 10.15171/apb.2019.023.
  • González, Y.A.G., and Triviño, G.C., 2022. New chitosan-based chemo pharmaceutical delivery systems for tumor cancer treatment: short-review. Journal of the Chilean chemical society, 67, 5425–5432.
  • Gou, Y., et al., 2021. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coordination chemistry reviews, 441, 213975. doi: 10.1016/j.ccr.2021.213975.
  • Hartinger, C.G., Metzler-Nolte, N., and Dyson, P.J., 2012. Challenges and opportunities in the development of organometallic anticancer drugs. Organometallics, 31 (16), 5677–5685. doi: 10.1021/om300373t.
  • Kim, J., et al., 2015. Polymeric biomaterials for the delivery of platinum-based anticancer drugs. Biomaterials science, 3 (7), 1002–1017. doi: 10.1039/c5bm00039d.
  • Kim, S., 2011. Chitin, chitosan, oligosaccharides and their derivatives-biological activities and applications. Boca Raton: CRC Press Taylor & Francis Group.
  • Li, J., et al., 2018. Chitosan-based nanomaterials for drug delivery. Molecules, 23 (10), 2661. doi: 10.3390/molecules23102661.
  • Li, X., et al., 2009. Characterization and biodegradation of chitosan–alginate polyelectrolyte complexes. Polymer degradation and stability, 94 (1), 1–6. doi: 10.1016/j.polymdegradstab.2008.10.017.
  • Liu, Y., et al., 2021. Chitosan-based self-assembled nanomaterials: their application in drug delivery. View, 2 (1), 20200069. doi: 10.1002/VIW.20200069.
  • Lu, Y., et al., 2022. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. Nanoscale, 14 (44), 16339–16375. doi: 10.1039/d2nr02994d.
  • Luo, Y., and Wang, Q., 2014. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. International journal of biological macromolecules, 64, 353–367. doi: 10.1016/j.ijbiomac.2013.12.017.
  • Maeda, H., et al., 2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release, 65 (1–2), 271–284. doi: 10.1016/s0168-3659(99)00248-5.
  • Martins, A.F., et al., 2012. Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin. International journal of biological macromolecules, 51 (5), 1127–1133. doi: 10.1016/j.ijbiomac.2012.08.032.
  • Martins, D.J., et al., 2015. Interaction of chitosan beads with a copper- naproxen metallodrug. RSC advances, 5, 90184–90192. doi: 10.1039/C5RA16878C.
  • Messori, L., et al., 2014. Unusual structural features in the lysozyme derivative of the tetrakis(acetato)chloridodiruthenium(II,III) complex.Angewandte chemie, 53 (24) 6172–6175. doi: 10.1002/anie.201403337.
  • Mikušová, V., and Mikuš, P.J., 2021. Advances in chitosan-based nanoparticles for drug delivery. International journal of molecular sciences, 22 (17), 9652. doi: 10.3390/ijms22179652.
  • Miyake, J.A., et al., 2014. Novel ruthenium-gamma-linolenic acid complex inhibits C6 rat glioma cell proliferation in vitro and in the orthotopic C6 model in vivo after osmotic pump infusion. Anticancer research, 34, 1901–1912.
  • Nascimento, R.R., et al., 2023. Poly(lactic acid)/β-cyclodextrin based nanoparticles bearing ruthenium(II)-arene naproxen complex: preparation and characterisation. Analytical validation for metal determination by microwave-induced plasma optical emission spectrometry. Journal of microencapsulation, 40, 67–81. doi: 10.1080/02652048.2023.2172469.
  • Nazarov, A.A., Hartinger, C.G., and Dyson, P.J., 2014. Opening the lid on piano-stool complexes: An account of ruthenium(II)-arene complexes with medicinal applications. Journal of organometallic chemistry, 751, 251–260. doi: 10.1016/j.jorganchem.2013.09.016.
  • Okuyama, K., et al., 1997. Molecular and crystal structure of hydrated chitosan. Macromolecules, 30 (19), 5849–5855. doi: 10.1021/ma970509n.
  • Paques, J.P., et al., 2014. Preparation methods of alginate nanoparticles. Advances in colloid and interface science, 209, 163–171. doi: 10.1016/j.cis.2014.03.009.
  • Parhi, R., 2020. Drug delivery applications of chitin and chitosan: a review. Environmental chemistry letters, 18 (3), 577–594. doi: 10.1007/s10311-020-00963-5.
  • Parveen, S., and Sahoo, S.K., 2011. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. European journal of pharmacology, 670 (2–3), 372–383. doi: 10.1016/j.ejphar.2011.09.023.
  • Patel, M.A., et al., 2017. The effect of ionotropic gelation residence time on alginatecross-linking and properties. Carbohydrate polymers, 155, 362–371. doi: 10.1016/j.carbpol.2016.08.095.
  • Petruk, G., et al., 2019. Encapsulation of the dinuclear trithiolato-bridged arene ruthenium complex diruthenium-1 in an apoferritin nanocage: structure and cytotoxicity. ChemMedChem. 14 (5), 594–602. doi: 10.1002/cmdc.201800805.
  • Poursharifi, M., Wlodarczyk, M.T., and Mieszawska, A.J., 2019. Nano-based systems and biomacromolecules as carriers for metallodrugs in anticancer therapy. Inorganics, 7 (1), 2. doi: 10.3390/inorganics7010002.
  • Rajaonarivony, M., et al., 1993. Development of a new drug carrier made from alginate. Journal of pharmaceutical sciences, 82 (9), 912–917. doi: 10.1002/jps.2600820909.
  • Ribeiro, G., et al., 2008. Diruthenium(II, III) complexes of ibuprofen, aspirin, naproxen and indomethacin non-steroidal anti-inflammatory drugs: synthesis, characterization and their effects on tumor-cell proliferation. Polyhedron, 27 (3), 1131–1137. doi: 10.1016/j.poly.2007.12.011.
  • Ribeiro, G., et al., 2010. The novel ruthenium-γ-linolenic complex [Ru2(aGLA)4Cl] inhibits C6 rat glioma cell proliferation and induces changes in mitochondrial membrane potential, increased reactive oxygen species generation and apoptosis in vitro. Cell biochemistry and function, 28 (1), 15–23. doi: 10.1002/cbf.1626.
  • Riccardi, C., et al., 2019. Anticancer ruthenium(III) complexes and Ru(III)-containing nanoformulations: an update on the mechanism of action and biological activity. Pharmaceuticals, 12 (4), 146. doi: 10.3390/ph12040146.
  • Rico, S.R.A., et al., 2017. Diruthenium(II,III) metallodrugs of ibuprofen and naproxen encapsulated in intravenously injectable polymer–lipid nanoparticles exhibit enhanced activity against breast and prostate cancer cells. Nanoscale, 9 (30), 10701–10714. doi: 10.1039/c7nr01582h.
  • Roberts, G. A. F., 1992. Chitin chemistry. London: The Macmillan Press Ltd.
  • Santos, R.L.S.R., et al., 2012. Synthesis and characterization of a diruthenium(II,III)–ketoprofen compound and study of the in vitro effects on CRC cells in comparison to the naproxen and ibuprofen derivatives. Polyhedron, 42 (1), 175–181. doi: 10.1016/j.poly.2012.05.012.
  • Santos, R.L.S.R., Sanches, R.N.F., and de Oliveira Silva, D., 2015. Spectroscopic studies on interactions of the tetrakis(acetato)chloridodiruthenium(II,III) complex and the Ru2(II,III)-NSAID-derived metallodrugs of ibuprofen and ketoprofen with human serum albumin. Journal of coordination chemistry, 68 (17-18), 3209–3228. doi: 10.1080/00958972.2015.1074684.
  • Santos, R.L.S.R., van Eldik, R., and de Oliveira Silva, D., 2012. Thermodynamics of axial substitution and kinetics of reactions with amino acids for the paddlewheel complex tetrakis(acetato)chloridodiruthenium(II,III). Inorganic chemistry, 51 (12), 6615–6625. doi: 10.1021/ic300168t.
  • Santos, R.L.S.R., van Eldik, R., and de Oliveira Silva, D., 2013. Kinetic and mechanistic studies on reactions of diruthenium(II,III) with biologically relevant reducing agents. Dalton transactions, 42 (48), 16796–16805. doi: 10.1039/c3dt51763b.
  • Sarmento, B., and Neves, J., 2012. Chitosan-based systems for biopharmaceuticals-delivery, targeting and polymer therapeutics. West Sussex: John Wiley & Sons, Ltd.
  • Sarmento, B., et al., 2007. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharmaceutical research, 24 (12), 2198–2206. doi: 10.1007/s11095-007-9367-4.
  • Sava, G., Bergamo, A., and Dyson, P.J., 2011. Metal-based antitumour drugs in the post-genomic era: what comes next? Dalton transactions (cambridge, England: 2003), 40 (36), 9069–9075. doi: 10.1039/c1dt10522a.
  • Shakil, M.S., et al., 2021. Using chitosan or chitosan derivatives in cancer therapy. Polysaccharides, 2 (4), 795–816. doi: 10.3390/polysaccharides2040048.
  • Sharifi‑Rad, J., et al., 2021. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer cell international, 21, 318. doi: 10.1186/s12935-021-02025-4.
  • Shen, J., et al., 2021. Recent advances in ruthenium(II) and iridium(III) complexes containing nanosystems for cancer treatment and bioimaging. Coordination chemistry reviews, 443, 214016. doi: 10.1016/j.ccr.2021.214016.
  • Sonkar, C., Sarkar, S., and Mukhopadhyay, S., 2022. Ruthenium(ii)–arene complexes as anti-metastatic agents, and related techniques. RSC medicinal chemistry, 13 (1), 22–38. doi: 10.1039/d1md00220a.
  • Steel, T.R., et al., 2021. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coordination chemistry reviews, 439, 213890. doi: 10.1016/j.ccr.2021.213890.
  • Sudhindra, P., et al., 2022. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coordination chemistry reviews, 460, 214462. doi: 10.1016/j.ccr.2022.214462.
  • Sumithaa, C., and Ganeshpandian, M., 2023. Half-sandwich ruthenium arene complexes bearing clinically approved drugs as ligands: the importance of metal − drug synergism in metallodrug design. Molecular pharmaceutics, 20 (3), 1453–1479. doi: 10.1021/acs.molpharmaceut.2c01027.
  • Swaminathan, S., et al., 2022. Piano stool Ru(II)-arene complexes having three monodentate legs: a comprehensive review on their development as anticancer therapeutics over the past decade. Coordination chemistry reviews, 459, 214403. doi: 10.1016/j.ccr.2021.214403.
  • Syed, M.H., et al., 2023. An overview on recent biomedical applications of biopolymers: their role in drug delivery systems and comparison of major systems. Journal of drug delivery science and technology, 80, 104121. doi: 10.1016/j.jddst.2022.104121.
  • Tabares, J.P.G., et al., 2019. A Ru(II)-p-cymene compound bearing naproxen-pyridineamide. Synthesis, spectroscopic studies, computational analysis and in vitro anticancer activity against lung cells compared to Ru(II)-p-cymene-naproxen and the corresponding drug ligands. Inorganica chimica acta, 489, 27–38. doi: 10.1016/j.ica.2019.01.030.
  • Thangavel, P., Viswanath, B., and Kim, S., 2017. Recent developments in the nanostructured materials functionalized with ruthenium complexes for targeted drug delivery to tumors. International journal of nanomedicine, 12, 2749–2758. doi: 10.2147/IJN.S131304.
  • Trapani, A., et al., 2011. Methotrexate-loaded chitosan- and glycolchitosan-based nanoparticles: a promising strategy for the administration of the anticancer drug to brain tumors. AAPS PharmSciTech, 12 (4), 1302–1311. doi: 10.1208/s12249-011-9695-x.
  • Tremlett, W.D.J., et al., 2021. Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coordination chemistry reviews, 445, 213950. doi: 10.1016/j.ccr.2021.213950.
  • Unagolla, J.M. and Jayasuriya, A.C., 2018. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. European journal of pharmaceutical sciences, 114, 199–209. doi: 10.1016/j.ejps.2017.12.012.
  • Ur-Rehman, H., et al., 2016. Axially-modified paddlewheel diruthenium(II,III)-ibuprofenato metallodrugs and the influence of the structural modification on U87MG and A172 human glioma cell proliferation, apoptosis, mitosis and migration. Journal of inorganic biochemistry, 165, 181–191. doi: 10.1016/j.jinorgbio.2016.10.003.
  • Ur-Rehman, H., et al., 2020. Self-Assembled Nanoparticles of Diruthenium(II,III)-Ibuprofen Anticancer Metallodrug. Journal of Brazilian chemistry society, 31, 2331–2341. doi: 10.21577/0103-5053.20200091.
  • Villemin, E., et al., 2019. Polymer encapsulation of ruthenium complexes for biological and medicinal applications. Nature reviews chemistry, 3 (4), 261–282. doi: 10.1038/s41570-019-0088-0.
  • Wang, X. and Guo, Z., 2013. Targeting and delivery of platinum-based anticancer drugs. Chemical society reviews, 42 (1), 202–224. doi: 10.1039/c2cs35259a.
  • Wang, Y., et al., 2016. Nanoparticles of chitosan conjugated to organoruthenium complexes. Inorganic chemistry frontiers, 3 (8), 1058–1064. doi: 10.1039/C6QI00115G.
  • Xu, Y. and Du, Y., 2003. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International journal of pharmaceutics, 250 (1), 215–226. doi: 10.1016/s0378-5173(02)00548-3.
  • Yadav, A. K., Gupta, U., and Sharma, R., 2021. Nano drug delivery strategies for the treatment of cancers. United Kingdom: Academic Press, Elsevier Inc.
  • Yu, S., et al., 2019. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. International journal of pharmaceutics, 560, 282–293. doi: 10.1016/j.ijpharm.2019.02.012.
  • Zeng, L., et al., 2017. The development of anticancer ruthenium(II) complexes: from single molecule compounds to nanomaterials. Chemical society reviews, 46 (19), 5771–5804. doi: 10.1039/c7cs00195a.
  • Zhang, P. and Sadler, P.J., 2017. Advances in the design of organometallic anticancer complexes. Journal of organometallic chemistry, 839, 5–14. doi: 10.1016/j.jorganchem.2017.03.038.
  • Zhu, X., et al., 2021. Cationic chitosan@Ruthenium dioxide hybrid nanozymes for photothermal therapy enhancing ROS-mediated eradicating multidrug resistant bacterial infection. Journal of colloid and interface science, 603, 615–632. doi: 10.1016/j.jcis.2021.06.073.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.