90
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Dual drug loaded polypeptide delivery systems for cancer therapy

, , , &
Pages 630-648 | Received 18 Apr 2023, Accepted 09 Oct 2023, Published online: 18 Oct 2023

References

  • Ambrosio Téllez, L., et al., 2022. Synthesis and mechanical behavior of poly (vinyl alcohol)/poly (vinyl acetate) microspheres. Polymer-plastics technology and materials, 61 (15), 1676–1690. doi: 10.1080/25740881.2022.2075273.
  • Ambrosio, L., et al., 2023. Anti-tumoral effect of doxorubicin-loaded poly(vinyl alcohol)/poly(vinyl acetate) microspheres in a rat model. Iranian polymer journal, 32 (3), 287–297. doi: 10.1007/s13726-022-01121-0.
  • Batist, G., et al., 2009. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clinical cancer research, 15 (2), 692–700. doi: 10.1158/1078-0432.CCR-08-0515.
  • D'Angelo, N.A., et al., 2022. Development of PEG-PCL-based polymersomes through design of experiments for co-encapsulation of vemurafenib and doxorubicin as chemotherapeutic drugs. Journal of molecular liquids, 349, 118166. doi: 10.1016/j.molliq.2021.118166.
  • Desale, S.S., et al., 2015. Polypeptide-based nanogels co-encapsulating a synergistic combination of doxorubicin with 17-AAG show potent anti-tumor activity in ErbB2-driven breast cancer models. Journal of controlled release, 208, 59–66. doi: 10.1016/j.jconrel.2015.02.001.
  • Do, H.D., et al., 2018. Folate-modified, curcumin and paclitaxel co-loaded PLA-TPGS nanoparticles: preparation, optimization and in vitro cytotoxicity assays. Advances in natural sciences, 9 (2), 025004. doi: 10.1088/2043-6254/aabb5c.
  • El-Say, K.M., and El-Sawy, H.S., 2017. Polymeric nanoparticles: promising platform for drug delivery. International journal of pharmaceutics, 528 (1-2), 675–691. doi: 10.1016/j.ijpharm.2017.06.052.
  • Ferrari, R., et al., 2018. Polymer nanoparticles for the intravenous delivery of anticancer drugs: the checkpoints on the road from the synthesis to clinical translation. Nanoscale, 10 (48), 22701–22719. doi: 10.1039/c8nr05933k.
  • Gadde, S., 2015. Multi-drug delivery nanocarriers for combination therapy. MedChemComm, 6 (11), 1916–1929. doi: 10.1039/C5MD00365B.
  • Gao, Z., et al., 2020. Polypeptide nanoparticles with pH-sheddable PEGylation for improved drug delivery. Langmuir, 36 (45), 13656–13662. doi: 10.1021/acs.langmuir.0c02532.
  • Georgilis, E., et al., 2020. Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. International journal of pharmaceutics, 586, 119537. doi: 10.1016/j.ijpharm.2020.119537.
  • Ghosh, S., et al., 2019. Combinatorial nanocarriers against drug resistance in hematological cancers: Opportunities and emerging strategies. Journal of controlled release : official journal of the controlled release society, 296, 114–139. doi: 10.1016/j.jconrel.2019.01.011.
  • Greco, F., and Vicent, M.J., 2009. Combination therapy: Opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Advanced drug delivery reviews, 61 (13), 1203–1213. doi: 10.1016/j.addr.2009.05.006.
  • He, C., et al., 2012. Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Advanced healthcare materials, 1 (1), 48–78. doi: 10.1002/adhm.201100008.
  • Housman, G., et al., 2014. Drug resistance in cancer: an overview. Cancers, 6 (3), 1769–1792. doi: 10.3390/cancers6031769.
  • Hu, C.M.J., Aryal, S., and Zhang, L., 2010. Nanoparticle-assisted combination therapies for effective cancer treatment. Therapeutic delivery, 1 (2), 323–334. doi: 10.4155/tde.10.13.
  • Hu, Q., et al., 2016. Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced drug delivery reviews, 98, 19–34. doi: 10.1016/j.addr.2015.10.022.
  • ISO 10993-5. 2009. Biological evaluation of medical devices—part 5: Tests for in vitro cytotoxicity.
  • Iudin, D., et al., 2020. Polypeptide self-assembled nanoparticles as delivery systems for polymyxins B and E. Pharmaceutics, 12 (9), 868. doi: 10.3390/pharmaceutics12090868.
  • Iyer, A.K., et al., 2013. Role of integrated cancer nanomedicine in overcoming drug resistance. Advanced drug delivery reviews, 65 (13-14), 1784–1802. doi: 10.1016/j.addr.2013.07.012.
  • Jacobs, J., et al., 2019. Polypeptide nanoparticles obtained from emulsion polymerization of amino acid N-carboxyanhydrides. Journal of the American chemical society, 141 (32), 12522–12526. doi: 10.1021/jacs.9b06750.
  • Katragadda, U., et al., 2011. Multi-drug delivery to tumor cells via micellar nanocarriers. International journal of pharmaceutics, 419 (1-2), 281–286. doi: 10.1016/j.ijpharm.2011.07.033.
  • Kolishetti, N., et al., 2010. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proceedings of the national academy of sciences of the united states of america, 107 (42), 17939–17944. doi: 10.1073/pnas.1011368107.
  • Levit, M., et al., 2018. Synthesis and characterization of well-defined poly(2-deoxy-2-methacrylamido-d-glucose) and its biopotential block copolymers via RAFT and ROP polymerization. European polymer journal. 105, 26–37. doi: 10.1016/j.eurpolymj.2018.05.018.
  • Levit, M., et al., 2020. Bio-inspired amphiphilic block-copolymers based on synthetic glycopolymer and poly(amino acid) as potential drug delivery systems. Polymers, 12 (1), 183. doi: 10.3390/polym12010183.
  • Lin, T.L., et al., 2019. A phase 2 study to assess the pharmacokinetics and pharmacodynamics of CPX-351 and its effects on cardiac repolarization in patients with acute leukemias. Cancer chemotherapy and pharmacology, 84 (1), 163–173. doi: 10.1007/s00280-019-03856-9.
  • Lin, X., et al., 2023. Nanoparticles for co-delivery of paclitaxel and curcumin to overcome chemoresistance against breast cancer. Journal of drug delivery science and technology, 79, 104050. doi: 10.1016/j.jddst.2022.104050.
  • Liu, J., et al., 2019. Effective co-encapsulation of doxorubicin and irinotecan for synergistic therapy using liposomes prepared with triethylammonium sucrose octasulfate as drug trapping agent. International journal of pharmaceutics, 557, 264–272. doi: 10.1016/j.ijpharm.2018.12.072.
  • Mansoori, B., et al., 2017. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Advanced pharmaceutical bulletin, 7 (3), 339–348. doi: 10.15171/apb.2017.041.
  • Marsden, H.R., Gabrielli, L., and Kros, A., 2010. Rapid preparation of polymersomes by a water addition/solvent evaporation method. Polymer chemistry, 1 (9), 1512. doi: 10.1039/c0py00172d.
  • Bruschi, M. L., 2015. Mathematical models of drug release. In Strategies to modify the drug release from pharmaceutical systems. Amsterdam: Elsevier, 63–86.
  • Mehnath, S., et al., 2018. Co-encapsulation of dual drug loaded in MLNPs: Implication on sustained drug release and effectively inducing apoptosis in oral carcinoma cells. Biomedicine & pharmacotherapy, 104, 661–671. doi: 10.1016/j.biopha.2018.05.096.
  • Miao, L., et al., 2017. Nanoformulations for combination or cascade anticancer therapy. Advanced drug delivery reviews, 115, 3–22. doi: 10.1016/j.addr.2017.06.003.
  • Milane, L., Duan, Z., and Amiji, M., 2011. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Molecular pharmaceutics, 8 (1), 185–203. doi: 10.1021/mp1002653.
  • Mitchell, M.J., et al., 2021. Engineering precision nanoparticles for drug delivery. Nature reviews. Drug discovery, 20 (2), 101–124. doi: 10.1038/s41573-020-0090-8.
  • Morton, S.W., et al., 2014. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Science signaling, 7 (325), ra44. doi: 10.1126/scisignal.2005261.
  • Moughton, A.O., Patterson, J.P., and O'Reilly, R.K., 2011. Reversible morphological switching of nanostructures in solution. Chemical communications, 47 (1), 355–357. doi: 10.1039/c0cc02160a.
  • Patra, J.K., et al., 2018. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology, 16 (1), 71. doi: 10.1186/s12951-018-0392-8.
  • Pitchika, S., and Sahoo, S.K., 2022. Paclitaxel and Lapatinib dual loaded chitosan-coated PLGA nanoparticles enhance cytotoxicity by circumventing MDR1-mediated trastuzumab resistance in HER2 positive breast cancers: in-vitro and in-vivo studies. Journal of drug delivery science and technology, 73, 103445. doi: 10.1016/j.jddst.2022.103445.
  • Podgórski, R., Wojasiński, M., and Ciach, T., 2022. Nanofibrous materials affect the reaction of cytotoxicity assays. Scientific reports, 12 (1), 9047. doi: 10.1038/s41598-022-13002-w.
  • Pushpalatha, R., Selvamuthukumar, S., and Kilimozhi, D., 2017. Nanocarrier mediated combination drug delivery for chemotherapy – A review. Journal of drug delivery science and technology, 39, 362–371. doi: 10.1016/j.jddst.2017.04.019.
  • Roell, K.R., Reif, D.M., and Motsinger-Reif, A.A., 2017. An introduction to terminology and methodology of chemical synergy—perspectives from across disciplines. Frontiers in pharmacology, 8, 158. doi: 10.3389/fphar.2017.00158.
  • Roque, M.C., et al., 2021. Preclinical toxicological study of long-circulating and fusogenic liposomes co-encapsulating paclitaxel and doxorubicin in synergic ratio. Biomedicine & pharmacotherapy, 144, 112307. doi: 10.1016/j.biopha.2021.112307.
  • Shah, M., et al., 2012. Biodegradation of elastin-like polypeptide nanoparticles. Protein science : a publication of the protein society, 21 (6), 743–750. doi: 10.1002/pro.2063.
  • Tardi, P., et al., 2009. In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy. Leukemia research, 33 (1), 129–139. doi: 10.1016/j.leukres.2008.06.028.
  • Tardi, P.G., et al., 2007. Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochimica et biophysica acta, 1768 (3), 678–687. doi: 10.1016/j.bbamem.2006.11.014.
  • Tardi, P.G., et al., 2009. Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Molecular cancer therapeutics, 8 (8), 2266–2275. doi: 10.1158/1535-7163.MCT-09-0243.
  • Tian, J., et al., 2017. Nanoparticle delivery of chemotherapy combination regimen improves the therapeutic efficacy in mouse models of lung cancer. Nanomedicine : nanotechnology, biology, and medicine, 13 (3), 1301–1307. doi: 10.1016/j.nano.2016.11.007.
  • Vichai, V., and Kirtikara, K., 2006. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature protocols, 1 (3), 1112–1116. doi: 10.1038/nprot.2006.179.
  • Wang, X., et al., 2021. Polypeptide-based drug delivery systems for programmed release. Biomaterials, 275, 120913. doi: 10.1016/j.biomaterials.2021.120913.
  • Williams, J., et al., 2003. Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors. Journal of controlled release, 91 (1-2), 167–172. doi: 10.1016/s0168-3659(03)00241-4.
  • Xiao, B., et al., 2015a. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. Journal of materials chemistry B, 3 (39), 7724–7733. doi: 10.1039/c5tb01245g.
  • Xiao, B., et al., 2015b. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale, 7 (42), 17745–17755. doi: 10.1039/c5nr04831a.
  • Xu, L., et al., 2022. Lipid Nanoparticles for Drug Delivery. Adv. NanoBiomed res, 2, 2100109.
  • Xu, X., et al., 2015. Cancer nanomedicine: From targeted delivery to combination therapy. Trends in molecular medicine, 21 (4), 223–232. doi: 10.1016/j.molmed.2015.01.001.
  • Yang, Q., et al., 2014. Coencapsulation of epirubicin and metformin in PEGylated liposomes inhibits the recurrence of murine sarcoma S180 existing CD133+ cancer stem-like cells. European journal of pharmaceutics and biopharmaceutics 88 (3), 737–745. doi: 10.1016/j.ejpb.2014.10.006.
  • Yang, S., et al., 2022. Drug-free neutrally charged polypeptide nanoparticles as anticancer agents. Journal of controlled release, 345, 464–474. doi: 10.1016/j.jconrel.2022.03.034.
  • Yao, Y., et al., 2020. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Frontiers in molecular biosciences, 7, 193. doi: 10.3389/fmolb.2020.00193.
  • Zashikhina, N., et al., 2019. Novel formulations of C-peptide with long-acting therapeutic potential for treatment of diabetic complications. Pharmaceutics, 11 (1), 27. doi: 10.3390/pharmaceutics11010027.
  • Zashikhina, N., et al., 2021. Synthesis and characterization of macroinitiators based on polyorganophosphazenes for the ring opening polymerization of n‐carboxyanhydrides. Polymers, 13 (9), 1446. doi: 10.3390/polym13091446.
  • Zashikhina, N., et al., 2022. Biocompatible nanoparticles based on amphiphilic random polypeptides and glycopolymers as drug delivery systems. Polymers, 14 (9), 1677. doi: 10.3390/polym14091677.
  • Zashikhina, N.N., et al., 2017. Self-assembled polypeptide nanoparticles for intracellular irinotecan delivery. European journal of pharmaceutical sciences, 109, 1–12. doi: 10.1016/j.ejps.2017.07.022.
  • Zhang, X., et al., 2016. EGF-modified mPEG-PLGA-PLL nanoparticle for delivering doxorubicin combined with Bcl-2 siRNA as a potential treatment strategy for lung cancer. Drug delivery, 23 (8), 2936–2945. doi: 10.3109/10717544.2015.1126769.
  • Zhang, Y., et al., 2010. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. The AAPS journal, 12 (3), 263–271. doi: 10.1208/s12248-010-9185-1.
  • Zhang, Y., et al., 2016. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Scientific reports, 6, 21225. doi: 10.1038/srep21225.
  • Zheng, C., et al., 2013. Polypeptide cationic micelles mediated co-delivery of docetaxel and siRNA for synergistic tumor therapy. Biomaterials, 34 (13), 3431–3438. doi: 10.1016/j.biomaterials.2013.01.053.
  • Zhou, J., et al., 2020. The drug-resistance mechanisms of five platinum-based antitumor agents. Frontiers in pharmacology, 11, 343. doi: 10.3389/fphar.2020.00343.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.