286
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Applications of propolis encapsulation in food products

, , &
Pages 567-586 | Received 01 May 2023, Accepted 16 Oct 2023, Published online: 28 Oct 2023

References

  • Andrade, J.K.S., et al., 2018. Development and characterization of microencapsules containing spray dried powder obtained from Brazilian brown, green and red propolis. Food research international, 109, 278–287. doi:10.1016/j.foodres.2018.04.048.
  • Anu Bhushani, J., and Anandharamakrishnan, C., 2014. Electrospinning and electrospraying techniques: Potential food based applications. Trends in food science & technology, 38 (1), 21–33. doi:10.1016/j.tifs.2014.03.004.
  • Aru, B., et al., 2019. Antiproliferative Activity of Chemically Characterized Propolis from Turkey and Its Mechanisms of Action. Chemistry & biodiversity, 16 (7), e1900189. doi:10.1002/cbdv.201900189.
  • Batista, C.M., et al., 2018. The photoprotective and anti-inflammatory activity of red propolis extract in rats. Journal of photochemistry and photobiology. B, biology, 180, 198–207. doi:10.1016/j.jphotobiol.2018.01.028.
  • Baysan, U., et al., 2021. The effect of coating material combination and encapsulation method on propolis powder properties. Powder technology, 384, 332–341. doi:10.1016/j.powtec.2021.02.018.
  • Baysan, U., Elmas, F., and Koç, M., 2019. The effect of spray drying conditions on physicochemical properties of encapsulated propolis powder. Journal of food process engineering, 42 (4), 1–11. doi:10.1111/jfpe.13024.
  • Bernardi, S., Trindade, M.A., and Balieiro, J.C.C., 2013. Italian-type salami with propolis as antioxidant. Italian journal of food science. 25, 433–441.
  • Berretta, A.A., et al., 2020. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: Running title: Propolis against SARS-CoV-2 infection and COVID. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 131, 110622. doi:10.1016/j.biopha.2020.110622.
  • Gray, C.J., et al., 2016. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochimica et biophysica acta, 1860 (8), 1688–1709. doi:10.1016/j.bbagen.2016.02.003.
  • Cao, J., et al., 2017. Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis. Analytica chimica acta, 963, 24–32. doi:10.1016/j.aca.2017.01.063.
  • Chang, X., et al., 2020. Fabrication and characterisation of whey protein isolate–propolis–alginate complex particles for stabilising α-tocopherol-contained emulsions. International dairy journal, 109, 104756. doi:10.1016/j.idairyj.2020.104756.
  • Contieri, L.S., et al., 2022. Standardization proposal to quality control of propolis extracts commercialized in Brazil: A fingerprinting methodology using a UHPLC-PDA-MS/MS approach. Food research international (ottawa, ont.), 161, 111846. doi:10.1016/j.foodres.2022.111846.
  • Cuesta-Rubio, O., et al., 2022. Chemical characterization and antioxidant potential of ecuadorian propolis. Phytochemistry, 203, 113415. doi:10.1016/j.phytochem.2022.113415.
  • Dalponte Dallabona, I., et al., 2020. Development of alginate beads with encapsulated jabuticaba peel and propolis extracts to achieve a new natural colorant antioxidant additive. International journal of biological macromolecules, 163, 1421–1432. doi:10.1016/j.ijbiomac.2020.07.256.
  • Daltin, D., 2012. Emulsionantes: química, propriedades e aplicações.
  • Ebadi, Z., et al., 2019. The shelf life extension of refrigerated Nemipterus japonicus fillets by chitosan coating incorporated with propolis extract. International journal of biological macromolecules, 139, 94–102. doi:10.1016/j.ijbiomac.2019.07.20.
  • El-aziz, E.A.E.-d.A., et al., 2021. The potential of optimized liposomes in enhancement of cytotoxicity and apoptosis of encapsulated Egyptian propolis on Hep-2 cell line. Pharmaceutics, 13 (12), 2184. doi:10.3390/pharmaceutics13122184.
  • El-Guendouz, S., et al., 2018. Effect of poplar-type propolis on oxidative stability and rheological properties of O/W emulsions. Saudi pharmaceutical journal: SPJ: the official publication of the saudi pharmaceutical society, 26 (8), 1073–1082. doi:10.1016/j.jsps.2018.05.017.
  • Fonseca, L.M., et al., 2019. Electrospinning of native and anionic corn starch fibers with different amylose contents. Food research international (ottawa, ont.), 116, 1318–1326. doi:10.1016/j.foodres.2018.10.021.
  • Franchin, M., et al., 2018. The use of Brazilian propolis for discovery and development of novel anti-inflammatory drugs. European journal of medicinal chemistry, 153, 49–55. doi:10.1016/j.ejmech.2017.06.050.
  • Gonçalves, A.C., et al., 2017. Sweet cherries from Fundão possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food research international (ottawa, ont.), 95, 91–100. doi:10.1016/j.foodres.2017.02.023.
  • Jamshidi, A., et al., 2020. Advantages of techniques to fortify food products with the benefits of fish oil. Food research international (ottawa, ont.), 137 (May), p. 109353. doi:10.1016/j.foodres.2020.109353.
  • Jansen-Alves, C., et al., 2018. Microencapsulation of Propolis in Protein Matrix Using Spray Drying for Application in Food Systems. Food and bioprocess technology, 11 (7), 1422–1436. doi:10.1007/s11947-018-2115-4.
  • Jansen-Alves, C., et al., 2019b. Production of Propolis Extract Microparticles with Concentrated Pea Protein for Application in Food. Food and bioprocess technology, 12 (5), 729–740. doi:10.1007/s11947-019-2246-2.
  • Jansen-Alves, C., et al., 2019a. Propolis microparticles produced with pea protein: Characterization and evaluation of antioxidant and antimicrobial activities. Food hydrocolloids. 87 (July 2018), 703–711. doi:10.1016/j.foodhyd.2018.09.004.
  • Jansen-Alves, C., et al., 2023. Encapsulation of propolis extract in ovalbumin protein particles: characterization and in vitro digestion. Natural product research, 37. doi:10.1080/14786419.2023.2214945.
  • Karlsen, J., 2020. Chapter: Encapsulation and other programmed/sustained-release techniques for essential oils and volatile terpenes. In: Book handbook of essential oils. 3rd ed. CRC Press, 868.
  • Katouzian, I., and Jafari, S.M., 2016. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in food science & technology, 53, 34–48. doi:10.1016/j.tifs.2016.05.002.
  • Krumreich, F., et al., 2016. Propriedades físicas e estabilidade de compostos presentes em polpa de uvaia em pó obtidos por métodos de secagem e adição de maltodextrina e goma arábica. Revista thema, 13 (2), 4–17. doi:10.15536/thema.13.2016.4-17.351.
  • Kuley, E., et al., 2021. Effectiveness of Lactobacilli cell-free supernatant and propolis extract microcapsules on oxidation and microbiological growth in sardine burger. Food bioscience, 44, 101417. doi:10.1016/j.fbio.2021.101417.
  • Labuschagne, P., 2018. Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food research international (ottawa, ont.), 107 (February 2018), 227–247. doi:10.1016/j.foodres.2018.02.026.
  • Lam, R.S.H., and Nickerson, M.T., 2013. Food proteins: A review on their emulsifying properties using a structure-function approach. Food chemistry, 141 (2), 975–984. doi:10.1016/j.foodchem.2013.04.038.
  • Lim, L.T., Mendes, A.C., and Chronakis, I.S., 2019. ‘Electrospinning and electrospraying technologies for food applications. Advances in food and nutrition research, 88, 167–234. doi:10.1016/bs.afnr.2019.02.005.
  • Mao, Y., and McClements, D.J., 2013. Modification of emulsion properties by heteroaggregation of oppositely charged starch-coated and protein-coated fat droplets. Food hydrocolloids. 33 (2), 320–326. doi:10.1016/j.foodhyd.2013.03.014.
  • Martín, M.J., et al., 2015. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative food science & emerging technologies, 27, 15–25. doi:10.1016/j.ifset.2014.09.010.
  • Márquez, D.G.P., Fuenmayor, C.A., and Suarez Mahecha, H., 2019. Effect of chitosan-propolis edible coatings on stability of refrigerated cachama (Piaractus brachypomus) vacuum-packed fish fillets. Packaging technology and science, 32 (3), 143–153. doi:10.1002/pts.2422.
  • Mehdizadeh, T., and Mojaddar Langroodi, A., 2019. Chitosan coatings incorporated with propolis extract and Zataria multiflora Boiss oil for active packaging of chicken breast meat. International journal of biological macromolecules, 141, 401–409. doi:10.1016/j.ijbiomac.2019.08.267.
  • Mei, L., et al., 2022. Nano-microencapsulation of tea seed oil via modified complex coacervation with propolis and phosphatidylcholine for improving antioxidant activity. LWT - Food science and technology, 163, 113550. doi:10.1016/j.lwt.2022.113550.
  • de Mélo Silva, I.S., et al., 2020. Encapsulation of red propolis in polymer nanoparticles for the destruction of pathogenic biofilms. AAPS pharmscitech, 21 (2), 49. doi:10.1208/s12249-019-1576-8.
  • Mendez-Pfeiffer, P., et al., 2021. Nanocarriers as drug delivery systems for propolis: A therapeutic approach. Journal of drug delivery science and technology. Editions de sante, 65, 102762. doi:10.1016/j.jddst.2021.102762.
  • Moreno, M.A., et al., 2020. Antifungal edible coatings containing Argentinian propolis extract and their application in raspberries. Food hydrocolloids. 107, 105973. doi:10.1016/j.foodhyd.2020.105973.
  • Moser, P., et al., 2017. Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food chemistry, 214, 308–318. doi:10.1016/j.foodchem.2016.07.081.
  • Nori, M.P., et al., 2011. Microencapsulation of propolis extract by complex coacervation. LWT - Food science and technology, 44 (2), 429–435. doi:10.1016/j.lwt.2010.09.010.
  • Onbas, R., et al., 2016. Cytotoxic and Nitric Oxide Inhibition Activities of Propolis Extract along with Microencapsulation by Complex Coacervation. Plant foods for human nutrition (dordrecht, Netherlands), 71 (3), 286–293. doi:10.1007/s11130-016-0558-1.
  • Ozkan, G., et al., 2019. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food chemistry, 272 (July 2018), 494–506. doi:10.1016/j.foodchem.2018.07.205.
  • Özmen, D., et al., 2018. Fabrication of propolis loaded electrosprayed nanoparticles. Journal of biotechnology, 280, S78. doi:10.1016/j.jbiotec.2018.06.257.
  • Pant, K., et al., 2022. Encapsulated bee propolis powder: Drying process optimization and physicochemical characterization. LWT, 155, 112956. doi:10.1016/j.lwt.2021.112956.
  • Park, Y.K., et al., 2002. Própolis produzida no sul do Brasil, Argentina e Uruguai: Evidências fitoquímicas de sua origem vegetal. Ciência rural, 2, 997–1003.
  • Pastor, C., et al., 2011. Quality and safety of table grapes coated with hydroxypropylmethylcellulose edible coatings containing propolis extract. Postharvest biology and technology, 60 (1), 64–70. doi:10.1016/j.postharvbio.2010.11.003.
  • Paulo, F., et al., 2021. Propolis microencapsulation by double emulsion solvent evaporation approach: Comparison of different polymeric matrices and extract to polymer ratio. Food and bioproducts processing, 127, 408–425. doi:10.1016/j.fbp.2021.03.019.
  • Ramli, N.A., et al., 2021. Physicochemical characteristics of liposome encapsulation of stingless bees’ propolis. Heliyon, 7 (4), e06649. doi:10.1016/j.heliyon.2021.e06649.
  • Refaat, H., et al., 2019. Modified spraying technique and response surface methodology for the preparation and optimization of propolis liposomes of enhanced anti-proliferative activity against human melanoma cell line A375. Pharmaceutics, 11 (11), 558. doi:10.3390/pharmaceutics11110558.
  • Refaat, H., et al., 2021. Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID. International journal of pharmaceutics, 592, 120028. doi:10.1016/j.ijpharm.2020.120028.
  • Reis, A. D., et al., 2017. Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at −15 °C. LWT - Food science and technology, 76, 306–313. doi:10.1016/j.lwt.2016.05.033.
  • Rimbach, G., et al., 2017. Anti-inflammatory properties of Brazilian green propolis encapsulated in a γ-cyclodextrin complex in mice fed a western-type diet. International journal of molecular sciences, 18 (6), 1141. doi:10.3390/ijms18061141.
  • Rizzolo, A., et al., 2016. Volatile compound composition and antioxidant activity of cooked ham slices packed in propolis-based active packaging. Food packaging and shelf life, 8, 41–49. doi:10.1016/j.fpsl.2016.03.002.
  • Rodriguez Patino, J.M., and Pilosof, A.M.R., 2011. Protein-polysaccharide interactions at fluid interfaces. Food hydrocolloids. 25 (8), 1925–1937. doi:10.1016/j.foodhyd.2011.02.023.
  • Sangboonruang, S., et al., 2022. Activity of Propolis Nanoparticles against HSV-2: Promising Approach to Inhibiting Infection and Replication. Molecules (basel, Switzerland), 27 (8), 2560. doi:10.3390/molecules27082560.
  • Santos, F.R.A. 2011. Emulsões múltiplas: formulação, caracterização, estabilidade e aplicações. Universidade Fernando Pessoa. https://bdigital.ufp.pt/bitstream/10284/2465/3/TM_16427.pdf.
  • Sato, T., et al., 2020. Chitosan-based coacervate polymers for propolis encapsulation: Release and cytotoxicity studies. International journal of molecular sciences, 21 (12), pp.4561. doi:10.3390/ijms21124561.
  • Serfert, Y., et al., 2013. Spray drying behaviour and functionality of emulsions with β-lactoglobulin/pectin interfacial complexes. Food hydrocolloids. 31 (2), 438–445. doi:10.1016/j.foodhyd.2012.11.037.
  • Shakoury, N., et al., 2022. Encapsulation of propolis extract in whey protein nanoparticles. LWT, 158, 113138. doi:10.1016/j.lwt.2022.113138.
  • Sharaf, S.M., et al., 2021. Deacetylated cellulose acetate nanofibrous dressing loaded with chitosan/propolis nanoparticles for the effective treatment of burn wounds. International journal of biological macromolecules, 193 (Pt B), 2029–2037. doi:10.1016/j.ijbiomac.2021.11.034.
  • Silveira, M.A.D., et al., 2021. Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomedicine & Pharmacotherapy, 138, 111526. doi:10.1016/j.biopha.2021.111526.
  • Soleimanifard, M., Feizy, J., and Maestrelli, F., 2021. Nanoencapsulation of propolis extract by sodium caseinate-maltodextrin complexes. Food and bioproducts processing, 128, 177–185. doi:10.1016/j.fbp.2021.05.005.
  • Spinelli, S., et al., 2015. Microencapsulated Propolis to Enhance the Antioxidant Properties of Fresh Fish Burgers. Journal of food process engineering, 38 (6), 527–535. doi:10.1111/jfpe.12183.
  • Šturm, L., et al., 2019. Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food and bioproducts processing, 116, 196–211. doi:10.1016/j.fbp.2019.05.008.
  • Tavares, L., et al., 2022. Propolis: Encapsulation and application in the food and pharmaceutical industries. Trends in food science & technology, 127, 169–180. doi:10.1016/j.tifs.2022.06.003.
  • Tong Kong, Y., and Veloo Kutty, R., 2022. Physical characterization of propolis encapsulated vitamin e TPGS as nanomedicine. Materials today: proceedings. Elsevier ltd, 48, 807–810. doi:10.1016/j.matpr.2021.02.320.
  • Ulag, S., et al., 2021. Propolis-based nanofiber patches to repair corneal microbial keratitis. Molecules (basel, Switzerland), 26 (9), 2577. doi:10.3390/molecules26092577.
  • Wihodo, M., and Moraru, C.I., 2013. Physical and chemical methods used to enhance the structure and mechanical properties of protein films: A review. Journal of food engineering, 114 (3), 292–302. doi:10.1016/j.jfoodeng.2012.08.021.
  • Liu, Y., and Cao, A., 2017. Chapter one - encapsulating proteins in nanoparticles: batch by batch or one by one. Methods in enzymology, 590, 1–31. doi:10.1016/bs.mie.2016.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.