82
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and bioactivity assessment of Coccinia grandis L. extract encapsulated alginate nanoparticles as an antidiabetic drug lead

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-17 | Received 13 Jul 2023, Accepted 09 Nov 2023, Published online: 27 Nov 2023

References

  • Ahmad, Z. and Khuller, G., 2008. Alginate-based sustained release drug delivery systems for tuberculosis. Expert opinion on drug delivery, 5 (12), 1323–1334. doi: 10.1517/17425240802600662.
  • Ahmed, F., Sairam, S., and Urooj, A., 2011. In vitro hypoglycemic effects of selected dietary fiber sources. Journal of food science and technology, 48 (3), 285–289. doi: 10.1007/s13197-010-0153-7.
  • Apostolidis, E. and Lee, C.M., 2010. In vitro potential of Ascophyllum nodosum phenolic antioxidant-mediated α-glucosidase and α-amylase inhibition. Journal of food science, 75 (3), H97–102. doi: 10.1111/j.1750-3841.2010.01544.x.
  • Armendáriz-Barragán, B., et al., 2016. Plant extracts: from encapsulation to application. Expert opinion on drug delivery, 13 (8), 1165–1175. doi: 10.1080/17425247.2016.1182487.
  • Ashraf, M.A., et al., 2018. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale research letters, 13 (1), 214. doi: 10.1186/s11671-018-2624-0.
  • Attanayake, A., et al., 2015. Antihyperglycemic activity of Coccinia grandis (L.) Voigt in streptozotocin induced diabetic rats. Indian journal of traditional knowledge, 14 (3), 376–381.
  • Attanayake, A., Arawwawala, L., and Jayatilaka, K., 2016. Chemical standardization of leaf extract of Coccinia grandis (L.) Voigt (Cucurbitaceae) of Sri Lankan origin. Journal of pharmacognosy and phytochemistry, 5 (5), 119–123.
  • Azantsa, B.G.K., et al., 2020. Antihyperglycemic mechanisms of Allium sativum, Citrus sinensis and Persea americana extracts: effects on inhibition of digestive enzymes, glucose adsorption and absorption on yeast cells and psoas muscles. Diabetes research – open journal, 6 (1), 1–9. doi: 10.17140/DROJ-6-143.
  • Cadena-Velandia, Z.G., et al., 2020. Quercetin-loaded alginate microparticles: a contribution on the particle structure. Journal of drug delivery science and technology, 56, 101558. doi: 10.1016/j.jddst.2020.101558.
  • Cooper, K.G. and Woods, J.P., 2009. Secreted dipeptidyl peptidase IV activity in the dimorphic fungal pathogen Histoplasma capsulatum. Infection and immunity, 77 (6), 2447–2454. doi: 10.1128/IAI.01345-08.
  • Costa, P. and Sousa Lobo, J., 2003. Evaluation of mathematical models describing drug release from estradiol transdermal systems. Drug development and industrial pharmacy, 29 (1), 89–97. doi: 10.1081/ddc-120016687.
  • Ćujić, N., et al., 2016. Chokeberry (Aronia melanocarpa L.) extract loaded in alginate and alginate/inulin system. Industrial crops and products, 86, 120–131. doi: 10.1016/j.indcrop.2016.03.045.
  • Da Rocha Neto, A.C., et al., 2018. Factors affecting the entrapment efficiency of β-cyclodextrins and their effects on the formation of inclusion complexes containing essential oils. Food hydrocolloids, 77, 509–523. doi: 10.1016/j.foodhyd.2017.10.029.
  • Dash, S., et al., 2010. Kinetic modeling on drug release from controlled drug delivery systems. Acta poloniae pharmaceutica, 67 (3), 217–223.
  • El-Kamel, A., Al-Gohary, O., and Hosny, E., 2003. Alginate-diltiazem hydrochloride beads: optimization of formulation factors, in vitro and in vivo availability. Journal of microencapsulation, 20 (2), 211–225.
  • Freitas, C. and Müller, R.H., 1998. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. International journal of pharmaceutics, 168 (2), 221–229. doi: 10.1016/S0378-5173(98)00092-1.
  • Ganesan, P., Arulselvan, P., and Choi, D.K., 2017. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus – current status. International journal of nanomedicine, 12, 1097–1111. doi: 10.2147/IJN.S124601.
  • Ghorbani, A., 2017. Mechanisms of antidiabetic effects of flavonoid rutin. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 96, 305–312. doi: 10.1016/j.biopha.2017.10.001.
  • Hariyadi, D.M. and Islam, N., 2020. Current status of alginate in drug delivery. Advances in pharmacological and pharmaceutical sciences, 2020, 8886095. doi: 10.1155/2020/8886095.
  • Jayaweera, D., 1982. Medicinal plants. Colombo: National Science Council of Sri Lanka.
  • Kanbargi, K.D., Sonawane, S.K., and Arya, S.S., 2017. Encapsulation characteristics of protein hydrolysate extracted from Ziziphus jujube seed. International journal of food properties, 20 (12), 3215–3224. doi: 10.1080/10942912.2017.1282516.
  • Karim, A., et al., 2022. Alginate-based nanocarriers for the delivery and controlled-release of bioactive compounds. Advances in colloid and interface science, 307, 102744. doi: 10.1016/j.cis.2022.102744.
  • Katuwavila, N.P., et al., 2016. Alginate nanoparticles protect ferrous from oxidation: potential iron delivery system. International journal of pharmaceutics, 513 (1–2), 404–409. doi: 10.1016/j.ijpharm.2016.09.053.
  • Krentz, A.J. and Bailey, C.J., 2005. Oral antidiabetic agents. Drugs, 65 (3), 385–411. doi: 10.2165/00003495-200565030-00005.
  • Kumar, S., et al., 2017. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. The journal of pharmacy and pharmacology, 69 (2), 143–150. doi: 10.1111/jphp.12672.
  • Kwon, O., et al., 2007. Inhibition of the intestinal glucose transporter GLUT2 by flavonoids. FASEB journal, 21 (2), 366–377. doi: 10.1096/fj.06-6620com.
  • Limanto, A., et al., 2019. Antioxidant, α-glucosidase inhibitory activity and molecular docking study of gallic acid, quercetin and rutin: a comparative study. Molecular and cellular biomedical sciences, 3 (2), 67–74. doi: 10.21705/mcbs.v3i2.60.
  • Liu, Q., et al., 2019. Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties. Food hydrocolloids. 93, 432–442. doi: 10.1016/j.foodhyd.2019.02.003.
  • Lyu, X., et al., 2021. Encapsulation of sea buckthorn (Hippophae rhamnoides L.) leaf extract via an electrohydrodynamic method. Food chemistry, 365, 130481. doi: 10.1016/j.foodchem.2021.130481.
  • Mohamed, F.A.N. and Laraba-Djebari, F., 2016. Development and characterization of a new carrier for vaccine delivery based on calcium-alginate nanoparticles: safe immunoprotective approach against scorpion envenoming. Vaccine, 34 (24), 2692–2699. doi: 10.1016/j.vaccine.2016.04.035.
  • Mohammed, S.I., et al., 2016. In vivo antidiabetic and antioxidant activities of Coccinia grandis leaf extract against streptozotocin induced diabetes in experimental rats. Asian pacific journal of tropical disease, 6 (4), 298–304. doi: 10.1016/S2222-1808(15)61034-9.
  • Munasinghe, M., et al., 2011. Blood sugar lowering effect of Coccinia grandis (L.) J. Voigt: path for a new drug for diabetes mellitus. Experimental diabetes research, 2011, 978762. doi: 10.1155/2011/978762.
  • Nathan, C. and Ding, A., 2010. Nonresolving inflammation. Cell, 140 (6), 871–882. doi: 10.1016/j.cell.2010.02.029.
  • Nayak, A.K. and Hasnain, M.S., 2020. Ionotropically gelled alginate particles in sustained drug release. In: A.K. Nayak and M.S. Hasnain, eds. Alginates in drug delivery. Netherlands: Elsevier Inc: Academic Press, 203–230.
  • Niazi, J., et al., 2009. Anti-inflammatory, analgesic and antipyretic activity of aqueous extract of fresh leaves of Coccinia indica. Inflammopharmacology, 17 (4), 239–244. doi: 10.1007/s10787-009-0010-3.
  • Noor, A., et al., 2022. Alginate based encapsulation of polyphenols of Piper betel leaves: development, stability, bio-accessibility and biological activities. Food bioscience, 47, 101715. doi: 10.1016/j.fbio.2022.101715.
  • Pamunuwa, G., Karunaratne, V., and Karunaratne, D., 2016. Effect of lipid composition on in vitro release and skin deposition of curcumin encapsulated liposomes. Journal of nanomaterials, 2016, 1–9. doi: 10.1155/2016/4535790.
  • Pandey, K.B. and Rizvi, S.I., 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity, 2 (5), 270–278. doi: 10.4161/oxim.2.5.9498.
  • Pasukamonset, P., Kwon, O., and Adisakwattana, S., 2016. Alginate-based encapsulation of polyphenols from Clitoria ternatea petal flower extract enhances stability and biological activity under simulated gastrointestinal conditions. Food hydrocolloids, 61, 772–779. doi: 10.1016/j.foodhyd.2016.06.039.
  • Patel, M.A., et al., 2017. The effect of ionotropic gelation residence time on alginate cross-linking and properties. Carbohydrate polymers, 155, 362–371. doi: 10.1016/j.carbpol.2016.08.095.
  • Putra, I.M.W.A., et al., 2021. Antidiabetic activity of Coccinia grandis (L.) Voigt: bioactive constituents, mechanisms of action, and synergistic effects. Journal of applied pharmaceutical science, 12 (1), 041–054.
  • Rehman, G., et al., 2018. In vitro antidiabetic effects and antioxidant potential of Cassia nemophila pods. BioMed research international, 2018, 1824790. doi: 10.1155/2018/1824790.
  • Saeedi, P., et al., 2019. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas. Diabetes research and clinical practice, 157, 107843. doi: 10.1016/j.diabres.2019.107843.
  • Safavi, M., Foroumadi, A., and Abdollahi, M., 2013. The importance of synthetic drugs for type 2 diabetes drug discovery. Expert opinion on drug discovery, 8 (11), 1339–1363. doi: 10.1517/17460441.2013.837883.
  • Sagandira, C.R., et al., 2021. An overview of the synthetic routes to essential oral anti-diabetes drugs. Tetrahedron, 96, 132378. doi: 10.1016/j.tet.2021.132378.
  • Sagbo, I.J., et al., 2018. In Vitro antidiabetic activity and mechanism of action of Brachylaena elliptica (Thunb.) DC. Evidence-based complementary and alternative medicine, 2018, 1–13. doi: 10.1155/2018/4170372.
  • Sakharkar, P. and Chauhan, B., 2017. Antibacterial, antioxidant and cell proliferative properties of Coccinia grandis fruits. Avicenna journal of phytomedicine, 7 (4), 295–307.
  • Saratale, R.G., et al., 2018. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artificial cells, nanomedicine, and biotechnology, 46 (1), 211–222. doi: 10.1080/21691401.2017.1337031.
  • Shah, R., et al., 2014. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. Journal of physical science, 25 (1), 59–75.
  • Shaheen, S.Z., et al., 2009. Antimicrobial activity of the fruit extracts of Coccinia indica. African journal of biotechnology, 8 (24), 7073–7076.
  • Shakoor, I., Pamunuwa, G., and Karunaratne, D., 2022. Effect of matrix composition on stability, release and bioaccessibility of encapsulated folic acid. Ceylon journal of science, 51 (2), 165–177. doi: 10.4038/cjs.v51i2.8011.
  • Shanmuganathan, E., et al., 2022. Selection and optimisation of extraction technique for the preparation of phenolic-and flavonoid-rich extract of leafy vegetable, Coccinia grandis (Linn.) Voigt. International food research journal, 29 (5), 1032–1042. doi: 10.47836/ifrj.29.5.06.
  • Shetta, A., Kegere, J., and Mamdouh, W., 2019. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. International journal of biological macromolecules, 126, 731–742. doi: 10.1016/j.ijbiomac.2018.12.161.
  • Siddhuraju, P. and Becker, K., 2003. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of agricultural and food chemistry, 51 (8), 2144–2155. doi: 10.1021/jf020444+.
  • Siepmann, J. and Siepmann, F., 2008. Mathematical modeling of drug delivery. International journal of pharmaceutics, 364 (2), 328–343. doi: 10.1016/j.ijpharm.2008.09.004.
  • Singleton, V.L., Orthofer, R., and Lamuela-Raventós, R.M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in enzymology, 299, 152–178.
  • Son, G.H., Lee, B.J., and Cho, C.W., 2017. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. Journal of pharmaceutical investigation, 47 (4), 287–296. doi: 10.1007/s40005-017-0320-1.
  • Sun, H., et al., 2023. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice, 204, 110945. doi: 10.1016/j.diabres.2021.109119.
  • Venkateswaran, S. and Pari, L., 2002. Effect of Coccinia indica on blood glucose, insulin and key hepatic enzymes in experimental diabetes. Pharmaceutical biology, 40 (3), 165–170. doi: 10.1076/phbi.40.3.165.5836.
  • Wasana, K.G.P., et al., 2021. Efficacy and safety of a herbal drug of Coccinia grandis (Linn.) Voigt in patients with type 2 diabetes mellitus: a double blind randomized placebo controlled clinical trial. Phytomedicine: international journal of phytotherapy and phytopharmacology, 81, 153431. doi: 10.1016/j.phymed.2020.153431.
  • Wickramaratne, M.N., Punchihewa, J., and Wickramaratne, D., 2016. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC complementary and alternative medicine, 16 (1), 466. doi: 10.1186/s12906-016-1452-y.
  • Wongverawattanakul, C., et al., 2022. Encapsulation of Mesona chinensis Benth extract in alginate beads enhances the stability and antioxidant activity of polyphenols under simulated gastrointestinal digestion. Foods, 11 (15), 2378. doi: 10.3390/foods11152378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.