178
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Tumour-specific hybrid nanoparticles in therapy of breast cancer

, , , &
Pages 45-65 | Received 25 Mar 2023, Accepted 04 Dec 2023, Published online: 27 Dec 2023

References

  • Adams, J.H., et al., 1987. Beta-adrenergic blockade restores glucose’s antiketogenic activity after exercise in carbohydrate-depleted athletes. The journal of physiology, 386 (1), 439–454. doi: 10.1113/jphysiol.1987.sp016543.
  • Altunay, N., et al., 2023. Ultrasound assisted dispersive solid phase microextraction using polystyrene-polyoleic acid graft copolymer for determination of Sb(III) in various bottled beverages by HGAAS. Food chemistry, 425, 136523. doi: 10.1016/j.foodchem.2023.136523.
  • Anitha, A., et al., 2014. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. European journal of pharmaceutics and biopharmaceutics, 88, 238–251.
  • Aytekin, A.O., Morimura, S., and Kida, K., 2011. Synthesis of chitosan–caffeic acid derivatives and evaluation of their antioxidant activities. Journal of bioscience and bioengineering, 111 (2), 212–216. doi: 10.1016/j.jbiosc.2010.09.018.
  • Boher, S., et al., 2023. Metal doped nanocomposites for detection of pesticides and phenolic compounds by colorimetry: Trends and challenges. OpenNano, 13, 100168. doi: 10.1016/j.onano.2023.100168.
  • Cai, S., et al., 2010. Forrest, Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. Journal of controlled release, 146 (2), 212–218. doi: 10.1016/j.jconrel.2010.04.006.
  • Chen, Q., Liang, S., and Thouas, G.A., 2013. Elastomeric biomaterials for tissue engineering. Progress in polymer science, 38 (3–4), 584–671. doi: 10.1016/j.progpolymsci.2012.05.003.
  • Cheng, W., et al., 2017. PH-sensitive delivery vehicle based on folic acid conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS applied materials & interfaces, 9 (22), 18462–18473. doi: 10.1021/acsami.7b02457.
  • Chernozem, R.V., Surmeneva, M.A., and Surmenev, R.A., 2018. Hybrid biodegradable scaffolds of piezoelectric polyhydroxybutyrate and conductive polyaniline: piezocharge constants and electric potential study. Materials letters, 220, 257–260. doi: 10.1016/j.matlet.2018.03.022.
  • Chernozem, R.V., et al., 2020. Diazonium chemistry surface treatment of piezoelectric polyhydroxybutyrate scaffolds for enhanced osteoblastic cell growth. Applied materials today, 20, 100758. doi: 10.1016/j.apmt.2020.100758.
  • Chung, T., et al., 2004. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth by dual mechanism. FASEB journal, 18 (14), 1670–1681. doi: 10.1096/fj.04-2126com.
  • Dao, K.L. and Hanson, R.N., 2012. Targeting the estrogen receptor using steroid–therapeutic drug conjugates (hybrids). Bioconjugate chemistry, 23 (11), 2139–2158. doi: 10.1021/bc300378e.
  • Dominski, A., et al., 2020. Biodegradable pH-responsive micelles loaded with 8-hydroxyquinoline glycoconjugates for Warburg effect based tumor targeting. European journal of pharmaceutics and biopharmaceutics, 154, 317–329.
  • Dong, J., Wan, G., and Liang, Z., 2010. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of biotechnology, 148 (2–3), 99–104. doi: 10.1016/j.jbiotec.2010.05.009.
  • Erol, A., et al., 2020. Biodegradable and biocompatible radiopaque iodinated poly(3-hydroxy butyrate): synthesis, characterization and in vitro/in vivo X-ray visibility. Polymer bulletin, 77 (1), 275–289. doi: 10.1007/s00289-019-02747-6.
  • Gajendiran, M., et al., 2013. Isoniazid loaded core shell nanoparticles derived from PLGA–PEG–PLGA tri-block copolymers: in vitro and in vivo drug release. Colloids and surfaces. B, biointerfaces, 104, 107–115. doi: 10.1016/j.colsurfb.2012.12.008.
  • Ghasemzadeh, A., Jaafar, H.Z.E., and Karimi, E., 2012. Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinale Roscoe) varieties. International journal of molecular sciences, 13 (11), 14828–14844. doi: 10.3390/ijms131114828.
  • Hassanpour, M., et al., 2021. Salicylic acid-loaded chitosan nanoparticles (SA/CTS NPs) for breast cancer targeting: synthesis, characterization and controlled release kinetics. Journal of molecular structure, 1245, 131040. doi: 10.1016/j.molstruc.2021.131040.
  • Hazer, B., et al., 2019. Synthesis of novel biodegradable elastomers based on poly[3-hydroxy butyrate] and poly[3-hydroxyoctanoate] via transamidation reaction. Polymer bulletin, 76 (2), 919–932. doi: 10.1007/s00289-018-2410-2.
  • Hazer, B., et al., 2020. Novel poly(3-hydroxy butyrate) macro RAFT agent. Synthesis and characterization of thermoresponsive block copolymers. Journal of polymer research, 27 (6), 147. doi: 10.1007/s10965-020-02133-1.
  • Hazer, B., Subramaniyan, S., and Zhang, B., 2021. Synthesis of biobased block copolymers using A novel methacrylated methyl salicylate and poly(3-Hydroxybutyrate). ChemistrySelect, 6 (43), 12255–12265. doi: 10.1002/slct.202102977.
  • Huang, B., et al., 2022. Preparation of acylated chitosan with caffeic acid in non-enzymatic and enzymatic systems: Characterization and application in pork preservation. International journal of biological macromolecules, 194, 246–253. doi: 10.1016/j.ijbiomac.2021.11.193.
  • Hurkat, P., et al., 2012. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery. Journal of nanoparticle research, 14 (11), 1219. doi: 10.1007/s11051-012-1219-4.
  • Jeong, I., et al., 2009. Prolonged analgesic effect of PLGA-encapsulated bee venom on formalin induced pain in rats. International journal of pharmaceutics, 380 (1–2), 62–66. doi: 10.1016/j.ijpharm.2009.06.034.
  • Jun, S.W., et al., 2020. Folic acid–conjugated chitosan-functionalized graphene oxide for highly efficient photoacoustic imaging-guided tumor-targeted photothermal therapy. International journal of biological macromolecules, 155, 961–971. doi: 10.1016/j.ijbiomac.2019.11.055.
  • Kapoor, S., et al., 2016. Intracellular delivery of peptide cargos using polyhydroxybutyrate based biodegradable nanoparticles: studies on antitumor efficacy of BCL-2 converting peptide, NuBCP-9. International journal of pharmaceutics, 511 (2), 876–889. doi: 10.1016/j.ijpharm.2016.07.077.
  • Kapare, H., et al., 2020. Caffeic acid phenethyl ester loaded poly (ε -caprolactone) nanoparticles for improved anticancer efficacy: formulation development, characterization and in vitro cytotoxicity study. Nanomedicine research journal 5 (4), 324–331.
  • Kilicay, E., et al., 2011. Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. European journal of pharmaceutical sciences, 44, 310–320.
  • Kizaloglu, A., et al., 2020. The preparation of chitosan membrane improved with nanoparticles based on unsaturated fatty acid for using in cancer-related infections. Journal of bioactive and compatible polymers, 35 (4–5), 328–350. doi: 10.1177/0883911520943222.
  • Kumaraswamy, R.V., et al., 2019. Salicylic acid functionalized chitosan nanoparticle: A sustainable biostimulant for plant. International journal of biological macromolecules, 123, 59–69. doi: 10.1016/j.ijbiomac.2018.10.202.
  • Liu, Y., et al., 2010. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials, 31 (35), 9145–9155. doi: 10.1016/j.biomaterials.2010.08.053.
  • Markam, R., Bajpai, J., and Bajpai, A.K., 2019. Synthesis of ginger derived nanocarriers (GDNC) and study of in vitro release of 5-amino salicylic acid (5-ASA) as an anti inflammatory drug. Journal of drug delivery science and technology, 50, 355–364. doi: 10.1016/j.jddst.2019.01.039.
  • Masood, F., et al., 2013. Encapsulation of Ellipticine in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Materials science & engineering. C, materials for biological applications, 33 (3), 1054–1060. doi: 10.1016/j.msec.2012.11.025.
  • Michalak, M., et al., 2020. Fermented curly kale as a new source of gentisic and salicylic acids with antitumor potential. Journal of functional foods, 67, 103866. doi: 10.1016/j.jff.2020.103866.
  • Misra, R. and Sahoo, S.K., 2010. Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. European journal of pharmaceutical sciences, 39 (1–3), 152–163. doi: 10.1016/j.ejps.2009.11.010.
  • Mu, Q., et al., 2015. Anti-HER2/neu peptideconjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells. Nanoscale, 7 (43), 18010–18014. doi: 10.1039/c5nr04867b.
  • Nia-Foroughi, B., et al., 2021. Progress in polymeric nanoparticles for delivery of tyrosine kinase inhibitors. Life sciences, 278, 119642.
  • Orsolic, N., et al., 2004. Immunomodulatory and antimetastatic action of propolis and related polyphenolic compounds. Journal of ethnopharmacol, 94, 307–315.
  • Rahaman, M.H.A., Omar, W.B.W., and Kadir, N.H.A., 2018. Caffeic acid boosted the efficiency of benzyl isothiocyanate to induce the death of human breast adenocarcinoma. Toxicology letters, 295 (1), S200. doi: 10.1016/j.toxlet.2018.06.889.
  • Reusch, R.N. 2000. Transmembrane ion transport by polyphosphate–poly-(R)-3-hydroxybutyrate complexes. Biochemical engineering translation, 65, 280–295.
  • Rostami, S., et al., 2022. Biomimetic sharkskin surfaces with antibacterial, cytocompatible, and drug delivery properties. Biomaterials advances, 134, 112565. doi: 10.1016/j.msec.2021.112565.
  • Siegel, R.L., Miller, K.D., and Jemal, A., 2017. Cancer statistics, CA cancer. CA: a cancer journal for clinicians, 67 (1), 7–30. doi: 10.3322/caac.21387.
  • Singh, S., et al., 2022. Biosynthesis of folic acid appended PHBV modified copper oxide nanorods for pH sensitive drug release in targeted breast cancer therapy. International journal of pharmaceutics, 622, 121831. doi: 10.1016/j.ijpharm.2022.121831.
  • Shah, M., et al., 2010. Amphiphilic PHAmPEG copolymeric nanocontainers for drug delivery: Preparation, characterization and in vitro evaluation. International journal of pharmaceutics, 400 (1–2), 165–175. doi: 10.1016/j.ijpharm.2010.08.008.
  • Surmenev, R.A., et al., 2019. Hybrid lead-free polymer-based nanocomposites with improved piezoelectric response for biomedical energy-harvesting applications: a review. Nano energy, 62, 475–506. doi: 10.1016/j.nanoen.2019.04.090.
  • Touaibia, M., Jean-François, J., and Doiron, J., 2011. Caffeic acid, a versatile pharmacophore: An Overview. Mini reviews in medicinal chemistry, 11 (8), 695–713. doi: 10.2174/138955711796268750.
  • Tuzen, M., Sahiner, S., and Hazer, B., 2016. Solid phase extraction of lead, cadmium and zinc on biodegradable polyhydroxybutyrate diethanol amine (PHB-DEA) polymer and their determination in water and food samples. Food chemistry, 210, 115–120. doi: 10.1016/j.foodchem.2016.04.079.
  • Tuzen, M., et al., 2022. Synthesized of poly(vinyl benzyl dithiocarbonate-dimethyl amino ethyl methacrylate) block copolymer as adsorbent for the vortex-assisted dispersive solid phase microextraction of patulin from apple products and dried fruits. Food chemistry, 395, 133607. doi: 10.1016/j.foodchem.2022.133607.
  • Ullah, S., Zainol, I., and Idrus, R.H., 2017. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds. International journal of biological macromolecules, 104 (Pt A), 1020–1029. doi: 10.1016/j.ijbiomac.2017.06.080.
  • Vahidfar, N., et al., 2021. Theranostic advances in breast cancer in nuclear medicine. International journal of molecular sciences, 22 (9), 4597. doi: 10.3390/ijms22094597.
  • Varricchio, C. G., 2004. A cancer source book for nurses. 8th ed. Boston, MA: Jones and Bartlett Publishers.
  • Wiggam, M.I., et al., 1997. Treatment of diabetic ketoacidosis using normalization of blood 3-hydroxybutyrate concentration as the endpoint of emergency management. Diabetes care, 20 (9), 1347–1352. doi: 10.2337/diacare.20.9.1347.
  • Yanik, C.S., et al., 1997. Ketosis resistance in fibrocalculous pancreatic diabetes: II. Hepatic ketogenesis after oral medium-chain triglycerides. Metabolism, 46, 1–4.
  • Yilmaz, S., et al., 2023. Vortex-assisted dispersive solid-phase microextraction of cadmium and copper on magnetic polystyrene-b- poly dimethyl siloxane hydrophobic block copolymer for their atomic absorption spectrometric determination in water, soft drink and food samples. Journal of food composition, 123, 105487.
  • Zeglinski, M., et al., 2011. Trastuzumab-induced cardiac dysfunction: a ‘dual-hit. Experimental & clinical cardiology, 16, 70–74.
  • Zhang, C., et al., 2010. Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. European journal of pharmaceutics and biopharmaceutics, 76 (1), 10–16. doi: 10.1016/j.ejpb.2010.05.005.
  • Zhao, P., et al., 2012. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: In vitro and in vivo evaluation. European journal of pharmaceutics and biopharmaceutics, 81 (2), 248–256. doi: 10.1016/j.ejpb.2012.03.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.