59
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the effect of wall material and pressure homogenisation on encapsulation parameters and thermal stability in chia seed oil microcapsules

, , , &
Pages 66-78 | Received 29 Apr 2023, Accepted 04 Dec 2023, Published online: 27 Dec 2023

References

  • Akonjuen, B.M., and Aryee, A.N.A., 2023. Novel extraction and encapsulation strategies for food bioactive lipids to improve stability and control delivery. Food chemistry advances, 2, 100278. doi: 10.1016/j.focha.2023.100278.
  • Albert, B.B., et al., 2015. Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA. Scientific reports, 5 (1), 7928. doi: 10.1038/srep07928.
  • Alimentarius, C., 1999. Codex standard for named vegetable oils (CODEX-STAN 210 – 1999), 1–13. Available from: http://www.fao.org/docrep/004/y2774e/y2774e04.htm.
  • Amaya Cano, J.S., et al., 2021. Formulation of a responsive in vitro digestion wall material, sensory and market analyses for chia seed oil capsules. Journal of food engineering, 296, 110460. doi: 10.1016/j.jfoodeng.2020.110460.
  • Bajac, J., et al., 2022. Microencapsulation of juniper berry essential oil (Juniperus communis L.) by spray drying: microcapsule characterization and release kinetics of the oil. Food hydrocolloids, 125, 107430. doi: 10.1016/j.foodhyd.2021.107430.
  • Barud, H.S., et al., 2007. Thermal characterization of bacterial cellulose–phosphate composite membranes. Journal of thermal analysis and calorimetry, 87 (3), 815–818. doi: 10.1007/s10973-006-8170-5.
  • Bastos, L.P.H., et al., 2020. Encapsulation of the black pepper (Piper nigrum L.) essential oil by lactoferrin-sodium alginate complex coacervates: structural characterization and simulated gastrointestinal conditions. Food chemistry, 316, 126345. doi: 10.1016/j.foodchem.2020.126345.
  • Blagojević, B., et al., 2022. Anthocyanins and phenolic acids from Prunus spinosa L. encapsulation in halloysite and maltodextrin based carriers. Applied clay science, 222, 106489. doi: 10.1016/j.clay.2022.106489.
  • Bordón, M.G., et al., 2021. Influence of the spray drying operating conditions on the estimated drying kinetics of emulsion single droplets and the properties of microencapsulated chia oil. Powder technology, 383, 302–317. doi: 10.1016/j.powtec.2021.01.030.
  • Carneiro, H.C.F., et al., 2013. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of food engineering, 115 (4), 443–451. doi: 10.1016/j.jfoodeng.2012.03.033.
  • Chalermthai, B., et al., 2019. Preparation and characterization of whey protein-based polymers produced from residual dairy streams. Polymers, 11 (4), 722. doi: 10.3390/polym11040722.
  • Chen, K., et al., 2023. Encapsulation of different spice essential oils in quinoa protein isolate-gum Arabic coacervates for improved stability. Carbohydrate polymers, 300, 120250. doi: 10.1016/j.carbpol.2022.120250.
  • Copado, C.N., Julio, L.M., Diehl, B.W., Ixtaina, V.Y., and Tomás, M.C. (2022). Characterization of three-layer microcapsules of chia seed oil obtained for electrostatic deposition technology. Biology and Life Sciences Forum, 17 (1), 23. doi: 10.3390/blsf2022017023.
  • Cortés, L.N., Villamil, R.A., and Cortés, L.Y., 2023. The impact of PUFA-enriched yogurt consumption on cardiovascular risk markers: a review. PharmaNutrition, 23, 100330. doi: 10.1016/j.phanu.2023.100330.
  • Costamagna, M.S., et al., 2017. Microencapsulated chañar phenolics: a potential ingredient for functional foods development. Journal of functional foods, 37, 523–530. doi: 10.1016/j.jff.2017.08.018.
  • Dadi, D.W., et al., 2020. Physical and functional properties, digestibility, and storage stability of spray- and freeze-dried microencapsulated bioactive products from Moringa stenopetala leaves extract. Industrial crops and products, 156, 112891. doi: 10.1016/j.indcrop.2020.112891.
  • Dickinson, E., 2009. Hydrocolloids as emulsifiers and emulsion stabilizers. Food hydrocolloids, 23 (6), 1473–1482. doi: 10.1016/j.foodhyd.2008.08.005.
  • Ding, X., et al., 2022. Thermal hazard and mechanism study of 5-(4-pyridyl)tetrazolate (H4-PTZ). Emergency management science and technology, 2 (1), 1–8. doi: 10.48130/EMST-2022-0013.
  • El-Messery, T.M., et al., 2020. The effect of spray-drying and freeze-drying on encapsulation efficiency, in vitro bioaccessibility and oxidative stability of krill oil nanoemulsion system. Food hydrocolloids, 106, 105890. doi: 10.1016/j.foodhyd.2020.105890.
  • Ferraz, M.C., et al., 2022. Co-encapsulation of paprika and cinnamon oleoresin by spray drying using whey protein isolate and maltodextrin as wall material: development, characterization and storage stability. Food research international, 162 (Pt B), 112164. doi: 10.1016/j.foodres.2022.112164.
  • Fırtın, B., et al., 2020. Encapsulation of chia seed oil with curcumin and investigation of release behaivour and antioxidant properties of microcapsules during in vitro digestion studies. Lebensmittel-Wissenschaft + [i.e. und] technologie. Food science + technology. Science + technologie alimentaire, 134, 109947. doi: 10.1016/J.LWT.2020.109947.
  • Foglio Bonda, A., et al., 2020. Alginate/maltodextrin and alginate/shellac gum core-shell capsules for the encapsulation of peppermint essential oil. International journal of biological macromolecules, 162, 1293–1302. doi: 10.1016/j.ijbiomac.2020.06.194.
  • González, A., et al., 2016. Study of the preparation process and variation of wall components in chia (Salvia hispanica L.) oil microencapsulation. Powder technology, 301, 868–875. doi: 10.1016/j.powtec.2016.07.026.
  • Goula, A.M., and Adamopoulos, K.G., 2012. A new technique for spray-dried encapsulation of lycopene. Drying technology, 30 (6), 641–652. doi: 10.1080/07373937.2012.655871.
  • Gulotta, A., et al., 2014. Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: formation using a spontaneous emulsification method. Journal of agricultural and food chemistry, 62 (7), 1720–1725. doi: 10.1021/jf4054808.
  • Hamed, S.F., et al., 2020. Edible alginate/chitosan-based nanocomposite microspheres as delivery vehicles of omega-3 rich oils. Carbohydrate polymers, 239, 116201. doi: 10.1016/j.carbpol.2020.116201.
  • Ixtaina, V.Y., et al., 2011. Characterization of chia seed oils obtained by pressing and solvent extraction. Journal of food composition and analysis, 24 (2), 166–174. doi: 10.1016/j.jfca.2010.08.006.
  • Jafari, S.M., et al., 2008. Encapsulation efficiency of food flavours and oils during spray drying. Drying technology, 26 (7), 816–835. doi: 10.1080/07373930802135972.
  • Jagadeesh, D., Jeevan Prasad Reddy, D., and Varada Rajulu, A., 2011. Preparation and properties of biodegradable films from wheat protein isolate. Journal of polymers and the environment, 19 (1), 248–253. doi: 10.1007/s10924-010-0271-3.
  • Kahieshesfandiari, M., et al., 2021. Herbal hydrogel‐based encapsulated Enterococcus faecium ABRIINW.N7 improves the resistance of red hybrid tilapia against Streptococcus iniae. Journal of applied microbiology, 131 (5), 2516–2527. doi: 10.1111/jam.15098.
  • Karaca, A.C., Nickerson, M., and Low, N.H., 2013. Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food chemistry, 139 (1–4), 448–457. doi: 10.1016/j.foodchem.2013.01.040.
  • Kiani, A., et al., 2021. Application of Tarkhineh fermented product to produce potato chips with strong probiotic properties, high shelf-life, and desirable sensory characteristics. Frontiers in microbiology, 12, 657579. doi: 10.3389/fmicb.2021.657579.
  • Kord Heydari, M., et al., 2021. Encapsulation of rose essential oil using whey protein concentrate-pectin nanocomplexes: optimization of the effective parameters. Food chemistry, 356, 129731. doi: 10.1016/J.FOODCHEM.2021.129731.
  • Liu, X., et al., 2023. Natural egg yolk emulsion as wall material to encapsulate DHA by two-stage homogenization: emulsion stability, rheology analysis and powder properties. Food research international, 167, 112658. doi: 10.1016/j.foodres.2023.112658.
  • Magallanes-Cruz, P.A., Duque-Buitrago, L.F., and del Rocío Martínez-Ruiz, N., 2023. Native and modified starches from underutilized seeds: characteristics, functional properties and potential applications. Food research international, 169, 112875. doi: 10.1016/j.foodres.2023.112875.
  • Milošević, M.M., Đorđević, T.R., and Antov, M.G., 2020. Complex coacervation of acid-extracted fiber from butternut squash (Cucurbita moschata) and protein. Food hydrocolloids, 108, 105999. doi: 10.1016/j.foodhyd.2020.105999.
  • Mohseni, F., and Goli, S.A.H., 2019. Encapsulation of flaxseed oil in the tertiary conjugate of oxidized tannic acid-gelatin and flaxseed (Linum usitatissimum) mucilage. International journal of biological macromolecules, 140, 959–964. doi: 10.1016/j.ijbiomac.2019.08.197.
  • Nami, Y., et al., 2022. Administration of microencapsulated Enterococcus faecium ABRIINW.N7 with fructo-oligosaccharides and fenugreek on the mortality of tilapia challenged with Streptococcus agalactiae. Frontiers in veterinary science, 9, 938380. doi: 10.3389/fvets.2022.938380.
  • Noello, C., et al., 2016. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition. Food research international, 89 (Pt 1), 549–557. doi: 10.1016/j.foodres.2016.09.003.
  • Otache, M.A., et al., 2021. Advances in the modification of starch via esterification for enhanced properties. Journal of polymers and the environment, 29 (5), 1365–1379. doi: 10.1007/s10924-020-02006-0.
  • Palamutoğlu, R., Kasnak, C., and Özen, B., 2022. Encapsulation of black cumin seed (Nigella sativa) oil by using inverse gelation method. Food hydrocolloids for health, 2, 100089. doi: 10.1016/j.fhfh.2022.100089.
  • Partanen, R., et al., 2008. Effect of relative humidity on oxidation of flaxseed oil in spray dried whey protein emulsions. Journal of agricultural and food chemistry, 56 (14), 5717–5722. doi: 10.1021/jf8005849.
  • Pham, L.B., et al., 2020. Microencapsulation of flaxseed oil using polyphenol-adducted flaxseed protein isolate-flaxseed gum complex coacervates. Food hydrocolloids, 107, 105944. doi: 10.1016/j.foodhyd.2020.105944.
  • Premi, M., and Sharma, H.K., 2017. Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behavior and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International journal of biological macromolecules, 105 (Pt 1), 1232–1240. doi: 10.1016/j.ijbiomac.2017.07.160.
  • Qiu, L., et al., 2022. Microencapsulation of rose essential oil in mung bean protein isolate-apricot peel pectin complex coacervates and characterization of microcapsules. Food hydrocolloids, 124, 107366. doi: 10.1016/j.foodhyd.2021.107366.
  • Quintero, J., et al., 2017. Vegetable proteins: non-sensitizing encapsulation agents for bioactive compounds. London: InTech, 43–65.
  • Rodea-González, D.A., et al., 2012. Spray-dried encapsulation of chia essential oil (Salvia hispanica L.) in whey protein concentrate-polysaccharide matrices. Journal of food engineering, 111 (1), 102–109. doi: 10.1016/j.jfoodeng.2012.01.020.
  • Selvia Fardhyanti, D., Megawati  , Kusumaningrum, M., Jai, J., Andriyani, R., and Rahmahani Putri, M., 2022. Encapsulation of Madeira vine (Anredera cordifolia) leaf oil using maltodextrin and gum Arabic as coating materials. Materials today: proceedings, 63, S105–S109. doi: 10.1016/j.matpr.2022.02.046.
  • Šeremet, D., et al., 2022. Development, characterization and incorporation of alginate-plant protein covered liposomes containing ground ivy (Glechoma hederacea L.) extract into candies. Foods, 11 (12), 1816. doi: 10.3390/foods11121816.
  • Shahidi, F., and Zhong, Y., 2005. Lipid oxidation: measurement methods. In: F. Shahidi, Ed. Bailey’s industrial oil and fat products. Wiley. doi: 10.1002/047167849X.bio050.
  • Shantha, N.C., and Decker, E.A., 1994. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. Journal of AOAC international, 77 (2), 421–424. doi: 10.1093/jaoac/77.2.421.
  • Timilsena, Y.P., et al., 2016. Microencapsulation of chia seed oil using chia seed protein isolate chia seed gum complex coacervates. International journal of biological macromolecules, 91, 347–357. doi: 10.1016/j.ijbiomac.2016.05.058.
  • Timilsena, Y.P., et al., 2017. Digestion behaviour of chia seed oil encapsulated in chia seed protein-gum complex coacervates. Food hydrocolloids, 66, 71–81. doi: 10.1016/j.foodhyd.2016.12.017.
  • Upadhyay, N., Yawale, P., and Eswari, E., 2023. Alpha linolenic acid. In: Valorization of biomass to bioproducts. Elsevier, 17–35. doi: 10.1016/B978-0-12-822888-3.00005-0.
  • Vasudev, S., et al., 2008. A simplified method for preparation of fatty acid methyl esters of Brassica oil. Czech journal of genetics and plant breeding, 68 (4), 456–458.
  • Villanueva-Bermejo, D., et al., 2019. Production of omega 3-rich oils from underutilized chia seeds. Comparison between supercritical fluid and pressurized liquid extraction methods. Food research international, 115, 400–407. doi: 10.1016/j.foodres.2018.10.085.
  • Weisany, W., et al., 2022. Targeted delivery and controlled released of essential oils using nanoencapsulation: a review. Advances in colloid and interface science, 303, 102655. doi: 10.1016/J.CIS.2022.102655.
  • Weiss, I.M., et al., 2018. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC biophysics, 11 (1), 2. doi: 10.1186/s13628-018-0042-4.
  • Yamashita, C., et al., 2021. Multi-response optimization of alginate bleaching technology extracted from brown seaweeds by an eco-friendly agent. Carbohydrate polymers, 251, 116992. doi: 10.1016/j.carbpol.2020.116992.
  • Zelikina, D., et al., 2022. Efficiency of an oral delivery system based on a liposomal form of a combination of curcumin with a balanced amount of n-3 and n-6 PUFAs encapsulated in an electrostatic complex of WPI with chitosan. Colloids and surfaces A: physicochemical and engineering aspects, 651, 129630. doi: 10.1016/j.colsurfa.2022.129630.
  • Zhang, J., et al., 2021a. Nanoencapsulation of zeaxanthin extracted from Lycium barbarum L. by complex coacervation with gelatin and CMC. Food hydrocolloids, 112, 106280. doi: 10.1016/j.foodhyd.2020.106280.
  • Zhang, X., et al., 2021b. Emulsion stability and dilatational rheological properties of soy/whey protein isolate complexes at the oil-water interface: influence of pH. Food hydrocolloids, 113, 106391. doi: 10.1016/j.foodhyd.2020.106391.
  • Zhu, J., et al., 2022. Preparation of spray-dried soybean oil body microcapsules using maltodextrin: effects of dextrose equivalence. LWT, 154, 112874. doi: 10.1016/j.lwt.2021.112874.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.