21
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Microemulsions based on Acer truncatum seed oil and its fatty acids: fabrication, rheological property, and stability

, , , , , & show all
Pages 296-311 | Received 24 Oct 2023, Accepted 24 Apr 2024, Published online: 06 May 2024

References

  • Abbasi, S., and Radi, M., 2016. Food grade microemulsion systems: canola oil/lecithin:n-propanol/water. Food chemistry, 194, 972–979. doi: 10.1016/j.foodchem.2015.08.078.
  • Amminger, G.P., et al., 2012. Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Molecular psychiatry, 17 (12), 1150–1152. doi: 10.1038/mp.2011.167.
  • Bancroft, W.D., 1913. The theory of emulsification, V. Journal of physical chemistry, 17 (6), 501–519. doi: 10.1021/j150141a002.
  • Basalious, E.B., et al., 2010. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: development and optimization. International journal of pharmaceutics, 391 (1–2), 203–211. doi: 10.1016/j.ijpharm.2010.03.008.
  • Bouchemal, K., et al., 2004. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. International journal of pharmaceutics, 280 (1–2), 241–251. doi: 10.1016/j.ijpharm.2004.05.016.
  • Caboi, F., et al., 2005. Effect of 1-butanol on the microstructure of lecithin/water/tripalmitin system. Chemistry and physics of lipids, 135 (2), 147–156. doi: 10.1016/j.chemphyslip.2005.02.010.
  • Chang, P., et al., 2022. Comparative study of the fatty acid composition of the Acer truncatum bunge from different producing areas. Forests, 13 (9), 1409. doi: 10.3390/f13091409.
  • Chen, Z., et al., 2018. Gypenosides as natural emulsifiers for oil-in-water nanoemulsions loaded with astaxanthin: insights of formulation, stability and release properties. Food chemistry, 261, 322–328. doi: 10.1016/j.foodchem.2018.04.054.
  • Cheng, M., 2021. Effects of refining process on the quality of Acer truncatum seed oil. China oils and fats, 46, 16–19. doi: 10.19902/j.cnki.zgyz.1003.
  • Date, A.A., et al., 2010. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (London, England), 5 (10), 1595–1616. doi: 10.2217/nnm.10.126.
  • Dehghan Manshadi, A., et al., 2019. Oxidative and physical stability, rheological properties and sensory characteristics of ‘salad dressing’ samples formulated with flaxseed oil and n-OSA starch. Journal of food measurement and characterization, 13 (1), 26–33. doi: 10.1007/s11694-018-9915-0.
  • Dhaval, M., et al., 2022. Lipid-based emulsion drug delivery systems – a comprehensive review. Drug delivery and translational research, 12 (7), 1616–1639. doi: 10.1007/s13346-021-01071-9.
  • Egito, E.S.T., and Machado, L.A., et al., 2018. HLB concept: a way to never forget it. Biomedical journal of scientific and technical research, 10, 001–002.
  • Ehinger, K.H.J., et al., 2013. Bioequivalence and tolerability assessment of a novel intravenous ciclosporin lipid emulsion compared to branded ciclosporin in cremophor (R) EL (vol 33, pg 25, 2013). Clinical drug investigation, 33 (3), 231–231. doi: 10.1007/s40261-012-0050-0.
  • Even, P., et al., 2010. Postprandial effects of a lipid-rich meal in the rat are modulated by the degree of unsaturation of 18C fatty acids. Metabolism: clinical and experimental, 59 (2), 231–240. doi: 10.1016/j.metabol.2009.07.017.
  • Figueiredo, K.A., et al., 2016. Phenobarbital loaded microemulsion: development, kinetic release and quality control. Brazilian journal of pharmaceutical sciences, 52 (2), 251–264. doi: 10.1590/S1984-82502016000200003.
  • Ge, Z., and Jin, W., et al., 2021. Purification of nervonic acid in Acer truncatum Bunge seed oil by low temperature crystallization. China oils and fats, 46, 99–102. doi: 10.19902/j.cnki.zgyz.1003-7969.2021.04.020.
  • Gradzielski, M., et al., 2021. Using microemulsions: formulation based on knowledge of their mesostructure. Chemical reviews, 121 (10), 5671–5740. doi: 10.1021/acs.chemrev.0c00812">10.1021/acs.chemrev.0c00812">http://doi:10.1021/acs.chemrev.0c00812.
  • Guttoff, M., et al., 2015. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food chemistry, 171, 117–122. doi: 10.1016/j.foodchem.2014.08.087.
  • Hassan, A.K., 2016. New accelerating stability testing protocol for O/W emulsions stabilized by nonionic surfactants including storage temperature determination. Indian journal of pharmaceutical sciences, 78 (3), 395–401. doi: 10.4172/pharmaceutical-sciences.1000130.
  • Hu, X., et al., 2023. Aqueous enzymatic extraction and quality evaluation of Acer truncatum Bunge seed oil. Canadian journal of chemical engineering, 101 (4), 2230–2239. doi: 10.1002/cjce.24623.
  • Huang, Z., et al., 2006. Amphoteric hydrophobic associative polymer: I synthesis, solution properties and effect on solution properties of surfactant. Colloid and polymer science, 285 (3), 365–370. doi: 10.1007/s00396-006-1570-z.
  • Hufnagl, A., and Gradzielski, M., 2001. Induction of a lamellar phase by the addition of a hydrocarbon to an isotropic ternary surfactant system. Colloids and surfaces A: Physicochemical and engineering aspects, 183–185, 227–234. doi: 10.1016/s0927-7757(01)00550-7.
  • Hung, W.-H., et al., 2021. Preparation and evaluation of azelaic acid topical microemulsion formulation: in vitro and in vivo study. Pharmaceutics, 13 (3), 410. doi: 10.3390/pharmaceutics13030410.
  • Jin, Y., et al., 2023. Improvement of stability and in vitro bioaccessibility of nervonic acid by nonionic surfactant in protein-based nanoemulsions. Food bioscience, 51, 102299. doi: 10.1016/j.fbio.2022.102299.
  • Kan, X., et al., 2020. Evaluation of bioaccessibility of zeaxanthin dipalmitate from the fruits of Lycium barbarum in oil-in-water emulsions. Food hydrocolloids, 105, 105781. doi: 10.1016/j.foodhyd.2020.105781.
  • Kouchi, M.M., et al., 2022. Development of an effective and safe system for bioavailability of vitamin E supplements in the stomach. Journal of surfactants and detergents, 25 (5), 635–642. doi: 10.1002/jsde.12595.
  • Li, Q., et al., 2019. A mini review of nervonic acid: source, production, and biological functions. Food chemistry, 301, 125286. doi: 10.1016/j.foodchem.2019.125286.
  • Li, Y., et al., 2022. Optimization technology and kinetic studies of Acer truncatum seed oil saponification and crystallization separation of nervonic acid. Journal of food science, 87 (9), 3925–3937. doi: 10.1111/1750-3841.16262.
  • Ma, Q., et al., 2019. Characterization of the complete chloroplast genome of Acer truncatum Bunge (Sapindales: Aceraceae): a new woody oil tree species producing nervonic acid. BioMed research international, 2019, 7417239–7417213. doi: 10.1155/2019/7417239.
  • Ma, Q., et al., 2020. The Acer truncatum genome provides insights into nervonic acid biosynthesis. Plant journal: for cell and molecular biology, 104 (3), 662–678. doi: 10.1111/tpj.14954.
  • Ma, Q., et al., 2022. Assembly and comparative analysis of the first complete mitochondrial genome of Acer truncatum Bunge: a woody oil-tree species producing nervonic acid. BMC plant biology, 22 (1), 29. doi: 10.1186/s12870-021-03416-5.
  • Man, Y., and Zhang, L., et al., 2015. Rheological properties of walnut oil microemulsion. Journal of Chinese institute of food science and technology, 15, 69–75. doi: 10.16429/j.1009-7848.2015.06.009.
  • McClements, D.J., 2011. Edible nanoemulsions: fabrication, properties, and functional performance. Soft matter, 7 (6), 2297–2316. doi: 10.1039/C0SM00549E.
  • Mori Cortés, N., et al., 2018. Food grade microemulsion systems: sunflower oil/castor oil derivative-ethanol/water. Rheological and physicochemical analysis. Food research international (Ottawa, Ont.), 107, 41–47. doi: 10.1016/j.foodres.2018.01.073.
  • Numin, M.S., et al., 2020. Microemulsion rheological analysis of alkaline, surfactant, and polymer in oil-water interface. Processes, 8 (7), 762. doi: 10.3390/pr8070762.
  • Pajouhandeh, A., et al., 2017. Experimental measurement and modeling of nanoparticle-stabilized emulsion rheological behavior. Colloids and surfaces A: Physicochemical and engineering aspects, 520, 597–611. doi: 10.1016/j.colsurfa.2017.02.002.
  • Park, Y.H., and Kim, H.J., 2021. Formulation and stability of horse oil-in-water emulsion by HLB system. Food science and biotechnology, 30 (7), 931–938. doi: 10.1007/s10068-021-00934-8.
  • Parkinson, C., and Sherman, P., 1972. Phase inversion temperature as an accelerated method for evaluating emulsion stability. Journal of colloid and interface science, 41 (2), 328–330. (72)90118-X. doi: 10.1016/0021-9797.
  • Peng, L.-P., et al., 2020. Fatty acid composition, phytochemistry, antioxidant activity on seed coat and kernel of Paeonia ostii from main geographic production areas. Foods (Basel, Switzerland), 9 (1), 30. doi: 10.3390/foods9010030.
  • Phung, N.V., et al., 2023. Nervonic acid and its sphingolipids: biological functions and potential food applications. Critical reviews in food science and nutrition, 4 (28), 1–20. doi: 10.1080/10408398.2023.2203753.
  • Qiu, S., et al., 2020. Tracking in vitro digestion and in vivo metabolism of water-in-oil-in-water microemulsion as a delivery carrier for alpha-linolenic acid. Journal of molecular liquids, 320, 114471. doi: 10.1016/j.molliq.2020.114471.
  • Roberts, G.P., et al., 2001. Modelling the flow behaviour of very shear-thinning liquids. Chemical engineering science, 56 (19), 5617–5623. doi: 10.1016/S0009-2509(01)00291-3.
  • Ruckenstein, E., 1978. The origin of thermodynamic stability of microemulsions. Chemical physics letters, 57 (4), 517–521. doi: 10.1016/0009-2614(78)85311-1.
  • Saberi, A.H., et al., 2013. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. Journal of colloid and interface science, 391, 95–102. doi: 10.1016/j.jcis.2012.08.069.
  • Sargent, J.R., et al., 1994. Nervonic acid and demyelinating disease. Medical hypotheses, 42 (4), 237–242. doi: 10.1016/0306-9877(94)90122-8.
  • Song, Q., et al., 2021. Preparation and physicochemical stability of tomato seed oil microemulsions. Journal of food science, 86 (12), 5385–5396. doi: 10.1111/1750-3841.15961.
  • Sottmann, T., and Strey, R., 1997. Ultralow interfacial tensions in water–n-alkane–surfactant systems. Journal of chemical physics, 106 (20), 8606–8615. doi: 10.1063/1.473916.
  • Sousa, R. P. F. D., et al., 2021. Formulation and study of an environmentally friendly microemulsion-based drilling fluid (O/W) with pine oil. Energies, 14 (23), 7981. doi: 10.3390/en14237981.
  • Sripriya, R., et al., 2007. The effect of structure of oil phase, surfactant and co-surfactant on the physicochemical and electrochemical properties of bicontinuous microemulsion. Journal of colloid and interface science, 314 (2), 712–717. doi: 10.1016/j.jcis.2007.05.080.
  • Szumała, P., and Wysocka, I., 2018. Effect of gelation and storage conditions on the oxidative stability of microemulsion and nanoemulsion delivery systems. European journal of pharmaceutical sciences: official journal of the European Federation for pharmaceutical sciences, 124, 17–25. doi: 10.1016/j.ejps.2018.08.021.
  • Taylor, D.C., et al., 2010. Brassica carinata – a new molecular farming platform for delivering bio-industrial oil feedstocks: case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels, bioproducts and biorefining, 4 (5), 538–561. doi: 10.1002/bbb.231.
  • Teng, Y., et al., 2023. The useful biological properties of sucrose esters: opportunities for the development of new functional foods. Critical reviews in food science and nutrition, 4 (17), 1–18. doi: 10.1080/10408398.2023.2194438.
  • Thevenin, M.A., et al., 1996. Sucrose esters/cosurfactant microemulsion systems for transdermal delivery: assessment of bicontinuous structures. International journal of pharmaceutics, 137 (2), 177–186. doi: 10.1016/0378-5173(96)04518-8.
  • Uribe-Wandurraga, Z.N., et al., 2021. Microalgae fortification of low-fat oil-in-water food emulsions: an evaluation of the physicochemical and rheological properties. Journal of food science and technology, 58 (10), 3701–3711. doi: 10.1007/s13197-020-04828-1.
  • Volpe, V., et al., 2020. Ciprofloxacin loaded o/w microemulsion against Staphylococcus aureus. Analytical and biological studies for topical and intranasal administration. Journal of drug delivery science and technology, 57, 101705. doi: 10.1016/j.jddst.2020.101705.
  • Wang, A., et al., 2013. Vegetable oil-based ionic liquid microemulsions and their potential as alternative renewable biolubricant basestocks. Industrial crops and products, 51, 425–429. doi: 10.1016/j.indcrop.2013.09.039.
  • Wang, M., and Chen, S., et al., 2020. Effect of cosurfactant and oil/water volume ratio on the phase behavior of microemulsion. Fine chemicals, 37, 1645–1652. doi: 10.13550/j.jxhg.20200244.
  • Wang, X., et al., 2022. Microemulsions based on peony (Paeonia suffruticosa Andr.) seed oil and its fatty acids: product development and stability enhancement. Industrial crops and products, 183, 114987. doi: 10.1016/j.indcrop.2022.114987.
  • Xu, Q., et al., 2022. Water-in-oil emulsions enriched with alpha-linolenic acid in diacylglycerol form: stability, formation mechanism and in vitro digestion analysis. Food chemistry, 391, 133201. doi: 10.1016/j.foodchem.2022.133201.
  • Yi, J., et al., 2021. Protection of menhaden oil from oxidation in pickering emulsion-based delivery systems with α-lactalbumin-chitosan colloidal nanoparticle. Food & function, 12 (22), 11366–11377. doi: 10.1039/d1fo02322e.
  • Yu, J., et al., 2019. Quantification of nervonic acid in human milk in the first 30 days of lactation: influence of lactation stages and comparison with infant formulae. Nutrients, 11 (8), 1892. doi: 10.3390/nu11081892.
  • Zeeb, B., et al., 2014. Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions. Journal of colloid and interface science, 433, 196–203. doi: 10.1016/j.jcis.2014.07.034.
  • Zeng, L., et al., 2017. Development and characterization of promising Cremophor EL-stabilized o/w nanoemulsions containing short-chain alcohols as a cosurfactant. RSC advances, 7 (32), 19815–19827. doi: 10.1039/C6RA27096D.
  • Zhang, Z.-M., et al., 2010. Effects of isomeric alcohols on the phase behavior and solubilization of the microemulsion systems formed by anionic surfactants. Colloid journal, 72 (2), 183–187. doi: 10.1134/S1061933X10020067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.