18
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Improving physicochemical characteristics and cytotoxicity of baicalin esters by liposome encapsulation

, ORCID Icon, , , &
Pages 312-325 | Received 07 Nov 2023, Accepted 19 Apr 2024, Published online: 08 May 2024

References

  • Alvandi, H., et al., 2022. Selective biological effects of natural selenized polysaccharides from Fomes fomentarius mycelia loaded solid lipid nanoparticles on bacteria and gastric cancer cells. Journal of drug delivery science and technology, 77, 103900. doi: 10.1016/j.jddst.2022.103900.
  • Bai, C., et al., 2011. Carboxymethylchitosan-coated proliposomes containing coix seed oil: Characterisation, stability and in vitro release evaluation. Food chemistry, 129 (4), 1695–1702. doi: 10.1016/j.foodchem.2011.06.033.
  • Brodkorb, A., et al., 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature protocols, 14 (4), 991–1014. doi: 10.1038/s41596-018-0119-1.
  • Cardona, M.I., et al., 2019. Development and in vitro characterization of an oral self-emulsifying delivery system (SEDDS) for rutin fatty ester with high mucus permeating properties. International journal of pharmaceutics, 562, 180–186. doi: 10.1016/j.ijpharm.2019.03.036.
  • Chen, Y., et al., 2016. Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting. Colloids and surfaces. B, biointerfaces, 140, 74–82. doi: 10.1016/j.colsurfb.2015.11.018.
  • Chen, Y., et al., 2019. Lipase-catalyzed synthesis mechanism of tri-acetylated phloridzin and its antiproliferative activity against HepG2 cancer cells. Food chemistry, 277, 186–194. doi: 10.1016/j.foodchem.2018.10.111.
  • Desai, M.P., et al., 1996. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharmaceutical research, 13 (12), 1838–1845. doi: 10.1023/a:1016085108889.
  • Di Venosa, G., et al., 2008. Characterisation of liposomes containing aminolevulinic acid and derived esters. Journal of photochemistry and photobiology. B, biology, 92 (1), 1–9. doi: 10.1016/j.jphotobiol.2008.03.008.
  • Du, Q., et al., 2024. Thermo-responsive liposome nano-vesicles for co-delivery of emamectin benzoate and nitenpyram with synergistic pest control. Chemical engineering journal and the biochemical engineering journal, 479, 147548. doi: 10.1016/j.cej.2023.147548.
  • Durand, E., Lecomte, J., and Villeneuve, P., 2017. The biological and antimicrobial activities of phenolipids. Lipid technology, 29 (7–8), 67–70. doi: 10.1002/lite.201700019.
  • Gombač, Z., et al., 2021. Stabilisation of lutein and lutein esters with polyoxyethylene sorbitan monooleate, medium-chain triglyceride oil and lecithin. Foods (Basel, Switzerland), 10 (3), 500. doi: 10.3390/foods10030500.
  • Gu, J.Y., Yu, D.D., and Wu, R.G., 2019. The interaction of evodiamine with liposome mimetic biomembrane: FTIR and DSC study. Spectroscopy and spectral analysis, 39 (6), 1757–1762.
  • Hamedinasab, H., et al., 2023. The protective effect of N-acetylcysteine against liposome and chitosan-induced cytotoxicity. Journal of microencapsulation, 40 (5), 357–365. doi: 10.1080/02652048.2023.2209646.
  • Hao, L.S., et al., 2021. Highly efficient whole-cell biosynthesis and cytotoxicity of esculin esters. Journal of biotechnology, 337, 46–56. doi: 10.1016/j.jbiotec.2021.06.023.
  • Jayaraj, P., et al., 2020. A pre-formulation strategy for the liposome encapsulation of new thioctic acid conjugates for enhanced chemical stability and use as an efficient drug carrier for MPO-mediated atherosclerotic CVD treatment. New journal of chemistry, 44 (7), 2755–2767. doi: 10.1039/C9NJ05258E.
  • Keshavarz-Rezaei, M., et al., 2022. The HbA1c and blood glucose response to selenium-rich polysaccharide from Fomes fomentarius loaded solid lipid nanoparticles as a potential antidiabetic agent in rats. Biomaterials advances, 140, 213084. doi: 10.1016/j.bioadv.2022.213084.
  • Kim, J.Y., et al., 2014. Nonallergenic urushiol derivatives inhibit the oxidation of unilamellar vesicles and of rat plasma induced by various radical generators. Free radical biology & medicine, 71, 379–389. doi: 10.1016/j.freeradbiomed.2014.03.041.
  • Li, N., et al., 2018. Preparation, characterization, pharmacokinetics and biodistribution of baicalin-loaded liposome on cerebral ischemia-reperfusion after i.v. administration in rats. Molecules (Basel, Switzerland), 23 (7), 1747. doi: 10.3390/molecules23071747.
  • Liu, W., et al., 2020. Research progress on liposomes: application in food, digestion behavior and absorption mechanism. Trends in food science & technology, 104, 177–189. doi: 10.1016/j.tifs.2020.08.012.
  • Liu, W.L., et al., 2019. Advances and challenges in liposome digestion: surface interaction, biological fate, and GIT modeling. Advances in colloid and interface science, 263, 52–67. doi: 10.1016/j.cis.2018.11.007.
  • López-García, F., et al., 1993. Infrared spectroscopic study of the interaction of diacylglycerol with phosphatidylserine in the presence of calcium. Biochimica et biophysica acta, 1169 (3), 264–272. doi: 10.1016/0005-2760(93)90250-d.
  • Lu, S., et al., 2022. Baicalin-liposomes loaded polyvinyl alcohol-chitosan electrospinning nanofibrous films: characterization, antibacterial properties and preservation effects on mushrooms. Food chemistry, 371, 131372. doi: 10.1016/j.foodchem.2021.131372.
  • Ma, J., et al., 2018. Cellular uptake and intracellular antioxidant activity of zein/chitosan nanoparticles incorporated with quercetin. Journal of agricultural and food chemistry, 66 (48), 12783–12793. doi: 10.1021/acs.jafc.8b04571.
  • Machado, A.R., et al., 2019. Liposomes loaded with phenolic extracts of Spirulina LEB-18: physicochemical characterization and behavior under simulated gastrointestinal conditions. Food research international (Ottawa, Ont.), 120, 656–667. doi: 10.1016/j.foodres.2018.11.023.
  • Maldonado-Valderrama, J., et al., 2011. The role of bile salts in digestion. Advances in colloid and interface science, 165 (1), 36–46. doi: 10.1016/j.cis.2010.12.002.
  • Meng, R., et al., 2020. Zein/carboxymethyl dextrin nanoparticles stabilized pickering emulsions as delivery vehicles: effect of interfacial composition on lipid oxidation and in vitro digestion. Food hydrocolloids, 108, 106020. doi: 10.1016/j.foodhyd.2020.106020.
  • Shin, G.H., et al., 2013. Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. Journal of agricultural and food chemistry, 61 (46), 11119–11126. doi: 10.1021/jf4035404.
  • Wang, X., et al., 2022. Gastrointestinal distribution of tyrosol acyl esters in orally infected mice and their hydrolysis by Lactobacillus species isolated from the feces of mice. Journal of agricultural and food chemistry, 70 (4), 1316–1326. doi: 10.1021/acs.jafc.1c07432.
  • Wei, Y., et al., 2014. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. International journal of nanomedicine, 9, 3623–3630. doi: 10.2147/IJN.S66312.
  • Wu, H., et al., 2014. Combined use of phospholipid complexes and self-emulsifying microemulsions for improving the oral absorption of a BCS class IV compound, baicalin. Acta pharmaceutica sinica. B, 4 (3), 217–226. doi: 10.1016/j.apsb.2014.03.002.
  • Xu, W., et al., 2021. Encapsulation of α-tocopherol in whey protein isolate/chitosan particles using oil-in-water emulsion with optimal stability and bioaccessibility. LWT, 148, 111724. doi: 10.1016/j.lwt.2021.111724.
  • Xin, X., et al., 2019. Biocatalytic Synthesis of lipophilic baicalin derivatives as antimicrobial agents. Journal of agricultural and food chemistry, 67 (42), 11684–11693. doi: 10.1021/acs.jafc.9b04667.
  • Xin, X., et al., 2018. Biocatalytic synthesis of acylated derivatives of troxerutin: their bioavailability and antioxidant properties in vitro. Microbial cell factories, 17 (1), 130. doi: 10.1186/s12934-018-0976-x.
  • Xu, W., et al., 2022. Liver-targeted nanoparticles facilitate the bioavailability and anti-HBV efficacy of baicalin in vitro and in vivo. Biomedicines, 10 (4), 900. doi: 10.3390/biomedicines10040900.
  • Zhang, J., et al., 2016. Ocular delivery of cyanidin-3-glycoside in liposomes and its prevention of selenite-induced oxidative stress. Drug development and industrial pharmacy, 42 (4), 546–553. doi: 10.3109/03639045.2015.1088867.
  • Zhang, M., et al., 2017. Cellular transport of esculin and its acylated derivatives in Caco-2 cell monolayers and their antioxidant properties in vitro. Journal of agricultural and food chemistry, 65 (34), 7424–7432. doi: 10.1021/acs.jafc.7b02525.
  • Zhang, M., et al., 2022. In vitro absorption and lipid-lowering activity of baicalin esters synthesized by whole-cell catalyzed esterification. Bioorganic chemistry, 120, 105628. doi: 10.1016/j.bioorg.2022.105628.
  • Zhang, Y., et al., 2020. Preparation, characterization and in vivo study of borneol-baicalin-liposomes for treatment of cerebral ischemia-reperfusion injury. International journal of nanomedicine, 15, 5977–5989. doi: 10.2147/IJN.S259938.
  • Zhao, L., et al., 2021. Solid dispersion and effervescent techniques used to prepare docetaxel liposomes for lung-targeted delivery system: in vitro and in vivo evaluation. Journal of drug targeting, 19 (3), 171–178. doi: 10.3109/10611861003801859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.