361
Views
125
CrossRef citations to date
0
Altmetric
Research Article

Activation of natural killer cells by heat shock protein 70

Pages 576-585 | Published online: 09 Jul 2009

  • Lindquist S, Craig EA. The heat shock proteins Amu Rev Genet 1988; 22: 631-77.
  • DeNagel DC, Pierce SK. A case for chaperones in antigen processing Immunol Today 1992; 3: 86-9.
  • Haiti FU. Molecular chaperones in protein folding Nature 1996; 381: 571-80.
  • Srivastava PK, Deleo AB, Old LJ. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sei USA 1986; 83: 3407-11.
  • Srivastava PK. Heat shock proteins in immune response to cancer: the fourth paradigm. Experientia 1994; 50: 1094-60.
  • Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 1997; 278: 117-20.
  • Schild H-J, Arnold-Schild A, Lammert E, Rammensee H-G. Stress proteins and immunity mediated by cytotoxic T lymphocytes. Curr Opin Immunol 1999; 11: 109-14.
  • Suto R, Srivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 1995; 269: 1585-7.
  • Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 1998; 8: 65762.
  • Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit cancer immunity. J Exp Med 1993; 178: 1391-6.
  • Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee H-J, Salle EH, Schild H. Receptor-mediated endocytosis of hsp by professional antigen-presenting cells. J Immunol 1999; 162: 3757-60.
  • Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol 2000; 1: 151-5.
  • Basu S, Binder RJ, Ramalingham T, Srivstava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001; 14: 303-13.
  • Asea A, Kraeft S-K, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK. Hsp70 stimulates cytokine production through a CD14-dependent pathway, demonstrating ist dual role as a chaperone and cytokine. Nat Med 2000; 6: 435-42.
  • Castellino F, Boucher PE, Eichelberg K, Mayhew M, Rothman JE, Houghton AN, Germain RN. Receptor mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. JExp Med2000; 191: 1957-64.
  • Udono H, Levey DL, Srivastava PK. Cellular requirements for tumor-specific immunity elicited by heat shock proteins tumor rejection antigen gp96 primes CDS + T cells in vivo. Proc Natl Acad Sd USA 1994; 91: 3077-81.
  • Ferrarini M, Heltai S, Zocchi MR, Rugarli C. Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer 1992; 51: 613-9.
  • Piselli P, Vendetti S, Poccia F, Cicconi R, Mattei M, Bolognesi A, Stripe F, Colizzi V. In vitro and in vivo efficacy of heat shock protein specific immunotoxins on human tumor cells. / Aio/ Regul Homeost Agents 1995; 9: 55-62.
  • Tamura Y, Tsuboi N, Sato N, Kikuchi K. 70 kDa heat shock cognate protein is a transformation-associated antigen and a possible target for the host's anti-tumor immunity. J Immunol 1993; 151: 5516-24.
  • Multhoff G, Botzler C, Wiesnet M, Müller E, Meier T, Wilmanns W, Issels RD. A stressinducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 1995; 61: 272-9.
  • Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP, Masur SK, Srivastava PK. Tumor-specific cell surface expression of the -KDEL containing, endoplasmic reticular heat shock protein gp96. Int J Cancer 1996; 69: 340-9.
  • Multhoff G, Botzler C, Wiesnet M, Eissner G, Issels RD. CD3- large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 1995; 86: 1374-82.
  • Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels RD. Heat shock protein 72 on tumor cells. A recognition structure for Natural Killer cells. J Immunol 1997; 158: 4341-50.
  • Botzler C, Issels R, Multhoff G. Heat-shock protein 72 cell-surface expression on human lung carcinoma cells in associated with an increased sensitivity to lysis mediated by adherent natural killer cells. Cancer Immunol Immunother 1996; 43: 226-30.
  • Botzler C, KoIb H-J, Issels RD, Multhoff G. Noncytotoxic alkyl-lysophospholipid treatment increases sensitivity of leukemic K562 cells to lysis by natural killer cells (NK). Int J Cancer 1996; 65: 633-8.
  • Multhoff G. Hsp72, a hyperthermia-inducible immunogenic determinant on leukemic K562 and Ewing's sarcoma cells. Int J Hyperthermia 1997; 13: 39-48.
  • Trinchieri G. Biology of natural killer cells. Adv Immunol 1989; 47: 187.
  • Ljunggren HG, Karre K. In search of the missing self: MHC molecules and NK recognition. Immunol Today 1990; 11: 237-44.
  • Siliciano RF, Pratt JC, Schmidt RE, Ritz J, Reinherz EL. Activation of cytolytic T lymphocytes and NK cell function through the Tl 1 sheep erythrocyte binding protein. Nature 1985; 317: 428-30.
  • Lanier LL, Ruitenberg JJ, Phillips JH. Functional and biochemical analysis of CDl6 antigen on NK cells and granulocytes. J Immunol 1988; 141: 3478-85.
  • Long EO. Regulation of immune responses through inhibitory receptors. Amu Rev Immunol 1999; 17: 875-904.
  • Vales-Gomez M, Reyburn H, Strominger J. Molecular analyses of the interactions between human NK receptors and their HLA ligands. Human Immunol 2000; 61: 28-38.
  • Zingoni A, Palmieri G, Morrone S, Carretero M, Lopez-Botet M, Piccoli M, Frati L, Santoni A. CD69-triggering ERK activation and functions are negatively regulated by CD94/NKG2A inhibitory receptor. Eur J Immunol 2000; 30: 644-51.
  • Lopez-Botet M, Perez-Villar JJ, Carretero M, Rodriguez A, Melero I, Bellon T, Llano M, Navarro F. Structure and function of the CD94 C-type lectin receptor complex involved in recognition of HLA class I molecules. Immunol Rev 1997; 155: 165-72.
  • Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC, Biassoni R. Activating receptors and coreceptors involved in human NK cell mediated cytolysis. Annu Rev Immunol 2001 ; 19: 197-223.
  • Lanier LL, Corliss B, Wu J, Phillips JH. Association of DAP12 with activating CD94/ NKG2C NK cell receptors. Immunity 1998; 8: 693-701.
  • Lanier LL, Chang C, Phillips JH. Human NKR-PIa. A disulphide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol 1994; 153: 2417-23.
  • Braud VM, Allan DSJ, O'Callaghan CA, Soderstrom K, D'Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael JA. HLA-E binds to natural killer cell receptors CD94/NKG2A, B, and C. Nature 1998; 391: 795-8.
  • Lanier LL. Turning on natural killer cells. J Exp Med 2000; 191: 1259-62.
  • Lanier LL. On guard-activating NK cell receptors. Nat Immunol 2001; 2: 23-7.
  • Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress inducible MICA. Science 1999; 285: 727-30.
  • Cosman D, Mullberg J, Fanslow W, Armitage R, Chin W, Cassiano I. The human cytomegalivirus (HCMV) glycoprotein, UL16, binds to the MHC class !-related protein, MICB/PERB11, and to two novel, MHC class I related molecules ULBPl and ULBP2. Faseb J 2000; 14: 1018-23.
  • Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. Ligands for the murine NKG2D receptor expression by tumor cells and activation of NK cells and macrophages. Nat Immunol 2000; 1: 119-26.
  • Malarkannan S, Skih PP, Eden PA, Horng T, Zuberi AM, Christianson G, Roopenian D, Shastri N. The molecular and functional characterization of dominant minor H antigen H60. J Immunol 1998; 161: 3501-9.
  • Wagtmann N, Biassoni R, Cantoni C, Verdiabnoi S, Malnati MS, Vitale M, Bottino C, Moretta L, Moretta A, Long EO. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both extra and intracellular domains. Immunity 1995; 2: 439-49.
  • Moretta A, Sivori S, Vitale M, Pende D, Morelli L, Augugliaro R, Bottino C, Moretta L. Existence of both inhibitory (p58) and activating (p50) receptors for HLA-C molecules in human natural killer cells. J Exp Med 1995; 182: 875-9.
  • Andre P, Biassoni R, Colonna M, Cosman D, Lanier LL, Long EO, Lopez-Botet M, Moretta A, Moretta L, Parham P, Trowsdale J, Vivier E, Wagtman N, Wilson MJ. New nomenclature for MHC receptors. Nature Immunol 2001; 2: 661.
  • Welch WJ, Suhan JP. Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J Cell Biol 1986; 103: 2035-52.
  • Strong DM, Ahmed AA, Thurman GB, Sell KW. In vitro stimulation of murine spleen cells using a microculturesystem and a multiple automated sample harvester. J Immunol Methods 1973; 2: 279-84.
  • Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Kampinga HH, Laumbacher B, Johnson J. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of NK cells. Exp Hematol 1999; 27: 1627-36.
  • Botzler C, Li G, Issels R, Multhoff G. Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress Chaperones 1998; 3: 6-11.
  • Reineke U, Ehrhard B, Sabat R, Volk H-D, Schneider-Mergener J. Mapping discontinuous epitopes using-cellulose-bound peptide libraries. Immunobiology 1996; 196: 96-104.
  • Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, Hiddemann W. A 14-mer Hsp70 peptide stimulates NK cell activity. Cell Stress Chaperones 2001; 6: 337-44.
  • Binder RJ, Harris ML, Menoret A, Srivastava PK. Saturation, competition, and specificity of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CDl Ib+ cells. J Immunol 2000; 165: 2582-6.
  • Gross C, Hansch D, Gastpar R, Multhoff G. Binding of Hsp70, Hsp70C, and the Hsp70 peptide TKD to NK cells involves CD94, Biol Chem 2002; in press.
  • Milani V, Noessner E, Ghose S, Kuppner M, Ahrens B, Scharner A, Gastpar R, Issels RD. Int J Hyperthermia 2002; 18: 563-575.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.