1,000
Views
144
CrossRef citations to date
0
Altmetric
Research Article

Heat shock protein 70: role in antigen presentation and immune stimulation

, , , , , , & show all
Pages 563-575 | Published online: 09 Jul 2009

  • Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experentia 1962; 18: 571-3.
  • Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Amu Rev Cell Biol 1993; 9: 601-34.
  • Bukau B, Horwich AL. The HSP70 and HSP60 chaperone machines. Cell 1998; 92: 351-66.
  • Milarski KL, Morimoto RI. Expression of human HSP70 during the synthetic phase of the cell cycle. Proc Nail Acad Sci USA 1986; 83: 9517-21.
  • Fuller J, Issels R, Slosman D, Guillet JG, Soussi T, Polla BS. Cancer and the heat shock response. Eur J Cancer 1994; 12: 1884-91.
  • Jolly C, Morimoto R. Role of heat shock protein response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 2000; 92: 1564-72.
  • Multhoff G, Botzler C, Wiesnet M, Eissner G, Issels R. CD3-large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood 1995; 86: 1374-82.
  • Multhoff G, Hightower LE. Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperone 1996; 1: 167-76.
  • Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R. Heat shock protein 72 on tumour cells: a recognition structure for natural killer cells. J Immunol 1997; 158:4341-50.
  • Multhoff G, Mizzel L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exper Hematol 1999; 27: 1627-36.
  • Srivastava PK, Udono H. Heat shock protein-peptide complexes in cancer immunotherapy. Curr Opin Immunol 1994; 6: 728-32.
  • Wells AD, Malkovsky M. Heat shock proteins, tumour immunogenicity and antigen presentation: an integrated view. Immunol Today 2000; 21: 129-32.
  • Magor BG, Magor KE. Evolution of effectors and receptors of innate immunity. Dev Comp Immunol 2001; 8-9: 651-82.
  • Matzinger P. Tolerance, danger, and the extended family. Amu Rev Immunol 1994; 12: 991-95.
  • Srivastava P, Menoret A, Basu S, Binder R, McQuade K. Heat shock protein come of age: primitive functions acquire new roles in an adaptive world. Immunity 1998; 8: 657-65.
  • Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock proteins expression. Nat Med 1998; 4: 581-7.
  • Singh-Jasuja H, HiIf N, Arnold-Schild D, Schild H. The role of heat shock proteins and their receptors in the activation of the immune system. Biol Chem 2001; 382: 629-36.
  • Chen W, Syldath U, Bellmann K, Burkart V, KoIb, H. Human 60 kDa heat shock protein. A danger signal to the innate immune response. J Immunol 1999; 162: 3212-9.
  • Breloer M, Dorner B, More SH, Roderian T, Fleischer B, von Bonin A. Heat shock protein as a 'danger signal': eucaryotic HSP60 enhances and accelerates antigen-specific IFN-gamma production in T cells. Eur J Immunol 2001; 31: 2051-9.
  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK. HSP70 stimulates cytokine production through a CD14 dependent pathway, demonstrating a dual role as a chaperone and cytokine. Nat Med 2000; 6: 435-42.
  • Kuppner M, Gastpar R, Gelwer S, Noessner E, Ochmann O, Scharner A, Issels RD. The role of heat shock protein (HSP70) in dendritic cell maturation: HSP70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocytes precursors. J Ew Immunol 2001; 31: 1602-9.
  • Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes REM, Schild H. The heat shock protein gp96 induces maturation of dendritic cells and down regulation of its receptor. Eur J Immunol 2000; 30: 2211-5.
  • Zheng H, Dai J, StoiIova D, Li Z. Cell surface targeting of heat shock protein gp96 induces dendritic cell maturation and antitumor immunity. J Immunol 2001; 167: 6731-5.
  • Panjwani N, Akbari O, Garcia S, Brazil M, Stockinger B. The HSC73 molecular chaperone: involvement in MHC class II antigen presentation. J Immunol 1999; 163: 1936-42.
  • Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 1993; 178: 1391-6.
  • Udono H, Srivastava PK. Comparison of tumor-specific immunogenicities of stressinduced proteins gp96, HSP90 and HSP70. J Immunol 1994; 152: 5398-403.
  • Suto R, Shrivastava PK. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 1995; 269: 1585-8.
  • Binder RJ, Blachere NE, Srivastava PK. Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J Biol Chem 2001; 276: 17163-71.
  • Castelli C, Ciupitu AM, Rini F, Rivoltini L, Mazzocchi A, Kiessling R, Parmiani G. Human heat shock 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res 2001; 61: 222-7.
  • Wang XY, Kazim L, Repasky E, Subjeck J. Characterization of heat shock protein 110 and glucose-regulated 170 as cancer vaccine and the effect of fever-range hyperthermia on vaccine activity. J Immunol 2001; 165: 490-7.
  • Banchereau J, Steinmann RM. Dendritic cells and the control of immunity. Nature 1999; 392: 245-52.
  • Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and down-regulated by tumor necrosis factor alpha. J Exp Med 1994; 179: 1109-18.
  • Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol 2000; 1: 151-5.
  • Strickland DK, Ashcom JD, Williams S, Burgess WH, Migliorini M, Agraves WS. Sequence identity between the alpha2-macroglobulin receptor and low density lipoprotein receptor related protein suggests that this molecule is a multifunctional receptor. J Biol Chem 1990; 265: 17401-4.
  • Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001; 14: 303-13.
  • KoI A, Bourcier T, Lichtman AH, Libby P. Chlamydial and human heat shock protein 60 activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 1999; 103: 571-7.
  • Morrison DC, Duncan RL, Goodman SA. In vivo biological activities of endotoxin. Prog Clin Biol Res 1985; 189: 81-99.
  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990; 249: 1431-3.
  • Ulevitch RJ. Recognition of bacterial endotoxins by receptor dependent mechanism. Adv Immunol 1993; 53: 267-89.
  • Savedra R, Delude RL, Ingalls RR, Fenton MJ, Golenbock DT. Mycobacterial lipoarabinamannan recognition requires a receptor that shares components of the endotoxin signaling system. J Immunol 1996; 157: 2549-54.
  • Weidemann B, Schletter J, Dziarski R, Kusumoto S, Stellet F, Rietschel ET, Flad HD, Ulmer AJ. Specific binding of soluble peptidoglycan and muramyldipeptide to CD 14 on human monocytes. Infect Immun 1997; 65: 858-64.
  • Gegner JA, Ulevitch RJ, Tobias PS. Lipopolysaccharide (LPS) signal transduction and clearance. Dual roles for LPS binding protein and membrane CD14. J Biol Chem 1995; 270: 5320-5.
  • Aderem A, Ulevitch RJ. Toll-like receptors in the induction of innate immune response. Nature 2000; 406: 782-7.
  • Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and aquired immunity. Nat Immunol 2001; 2: 675-80.
  • Medzhitov R, Preston-Hurlburt P, Kopp E, Stadien A, Chen C, Ghosh S, Janeway CA. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. MoI Cell 1998; 2: 253-8.
  • Medzhitov R, Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91: 295-8.
  • Kirschning CJ, Wesche H, Merrill Ayres T, Rothe M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med 1998; 188: 2091-7.
  • Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva E, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282: 2085-8.
  • Pugin J, Heumann ID, Tomasz A, Kravchenko VV, Akamatsu Y, Nishijima M, Glauser MP, Tobias PS, Ulevitch RJ. CD14 is a pattern recognition receptor. Immunity 1994; 1: 509-16.
  • Akira S, Hoshino K, Kaisho T. The role of Toll-like receptors and MyD88 in innate immune responses. / Endotoxin Res 2000; 6: 383-7.
  • KoI A, Sukhova GK, Lichtman AH, Libby P. Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumour necrosis factor-alpha and matrix metalloproteinase expression. Circulation 1998; 98: 300-7.
  • Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001; 276: 31332-9.
  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. Novel signal transduction pathway utilized by extracellular HSP70: role of TLR2 and TLR4. J Biol Chem 2002; 277: 15028-34.
  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. HSP70 as endogenous stimulus of Toll/interleukin-1 receptor signal pathway. J Biol Chem 2002; 277: 15107-12.
  • Visintin A, Mazzoni A , Spitzer JH, Wyllie DH, Dower SK, Segal DM. Regulation of Toll-like receptors in human monocytes and dendritic cells. J Immunol 2001; 166: 249-55.
  • Pugin J, Schurer-Maty CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide binding protein and soluble CD14. Proc Natl Acad Sci USA 1993; 90: 2744-8.
  • Sato S, Nomura F, Kawai T, Takeuchi O, Muhlradt PF, Takeda K, Akira S. Synergy and cross-tolerance between toll-like receptor (TLR)2 and TLR-4 mediated signaling pathways. J Immunol 2000; 165: 7096-101.
  • Ohashi K, Burkart V, Flohe S, KoIb H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol 2000; 164: 558-61.
  • Srivastava PK, DeLeo AB, Old LJ. Tumor rejection antigens of chemically induced sarcomas in inbred mice. Proc Natl Acad Sci USA 1986; 83: 3407-11.
  • Breloer M, Marti T, Fleischer B, von Bonin A. Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96. Eur J Immunol 1998; 28: 1016-21.
  • Blachere NE, Udono H, Janetzki S, Li Z, Heike M, Srivastava PK. Heat shock protein vaccine against cancer. J Immunother 1993; 14: 352-6.
  • Ciupitu AM, Petersson M, Odonnell CL, Williams K, Jindal S, Kiessling R, Welsh RM. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J Exp Med 1998; 187: 685-91.
  • Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock proteins preparations. Science 1997; 278: 117-20.
  • Vanaja DK, Grossmann ME, Celis E, Young CY. Tumor prevention and antitumor immunity with heat shock protein 70 induced by 15-deoxy-delta12,14-prostaglandin J2 in transgenic adenocarcinoma of mouse prostata cells. Cmcer Res 2000; 60: 4714-8.
  • Srivastava PK. Immunotherapy of human cancer: lessons from mice. Nature Immunology 2000: 1: 363-6.
  • Menoret A, Chandawarkar R. Heat-shock protein-based anticancer immunotherapy: an idea whose time has come. Semin Oncol 1998; 25: 654-60.
  • Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparation: a pilot study. Int J Cancer 2000; 88: 232-8.
  • Obrador E, Carretero J, Pellicer JA, Estrela JM. Possible mechanism for tumour cell sensitivity to TNF-a and potential therapeutic applications. Curr Pharm Biotechnol 2001; 2: 119-30.
  • Stewart JR, Gibbs FA Jr. Hyperthermia in the treatment of cancer. Perspectives on its promise and its problems. Cancer 1984; 54: 2823-30.
  • Overgaard J, Gonzalez Gonzalez D, Hulshof MC, Arcangeli G, Dahl O, Mella O, Bentzen SM. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. European Society for Hyperthermic Oncology. Lancet 1995; 345: 540-3.
  • FaIk M, Issels RD. Hyperthermia in oncology. Int J Hyperthermia 2001; 17: 1-18.
  • Basu S, Binder R, Suto R, Anderson KM, Srivastava P. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kB. Int Immunol 2000; 12: 1539-46.
  • Todryk S, Melcher A, Hardwick N, Linardakis E, Bateman A, Colombo M, Stoppacciaro A, Vile RG. Heat shock protein 70 induced during tumor cell killing induces ThI cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol 1999; 163: 1398-408.
  • Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, Schild H. Cutting edge: Receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 1999; 162: 3757-60.
  • Somersan S, Larsson M, Fonteneau J, Basu S, Srivastava P, Bhardway N. Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol 2001; 167: 4844-52.
  • Udono H, Yamano T, Kawabata Y, Ueda M, Yui K. Generation of cytotoxic T lymphocytes by MHC class I ligands fused to heat shock cognate protein 70. Int Immunol 2001; 13: 1233-42.
  • Kammerer R, Stober D, Riedl P, Oehninger C, Schirmbeck R, Reimann J. Noncovalent association with stress protein facilitates cross-priming of DCS+ T cells to tumor cell antigens by dendritic cells. J Immunol 2002; 168: 108-17.
  • Noessner E, Gastpar R, Milani V, Brandi A, Hutzler PJS, Kuppner MC, Roos M, Kremmer E, Asea A, Calderwood SK, Issels RD. Tumor-derived heat shock protein 70-peptide complexes are cross-presented by human dendritic cells. J. Immunol 2002 (in press).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.