1,985
Views
273
CrossRef citations to date
0
Altmetric
Research Article

Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage

Pages 252-266 | Published online: 09 Jul 2009

  • Lepock, JR, Protein denaturation during heat shock. Adv Molec Cell Biol. 1997; 19: 223259.
  • Westra A, Dewey, WC. Variation in sensitivity to heat shock during the cell cycle of Chinese hamster cells in vitro. Int J. Radiat Biol. 1971; 19: 67-477.
  • Laszlo A. Evidence for two states of thermotolerance in mammalian cell. Int J. Hyperthermia 1988; 4: 353-358.
  • Mozhaev VV, Martinek K. Inactivation and reactivation of proteins (enzymes). Enzyme Microb Technol. 1982; 4: 299-309.
  • Hahn, GM. Hyperthermia and Cancer. New York: Plenum Press, pp. 90-94, 1982.
  • Leith JT, Miller RC, Gerner EG, Boone MLM. Hypothermie potentiation: biological aspects and applications to radiation therapy. Cancer 1977; 39: 766-779.
  • Borrelli MJ, Thompson LL, Cain CA, Dewey WC. Time-temperature analysis of cell killing: BHK cells heated at temperatures in the range of 43.5°C to 57°C. Int J. Radiat Oncology Biol Phys. 1990; 19: 389-399.
  • Kruuv J, Glofcheski D. Cheng KH, Cambpell SD, Al-Qysi HMA, Nolan WT, Lepock JR. J. Cell Physiol. 1983; 115: 179-185.
  • Wanatabe I, Okada S. Stationary phase of cultured mammalian cells (L5178Y). J. Cell Biol. 1967; 35: 285-94.
  • Johnson FH, Eyring H, Stover BJ. The theory of rate processes in biology and medicine. New York: John Wiley and Sons, Inc, 1974.
  • Hochachka, PW. Defense strategies against hypoxia and hypothermia. Science 1986; 31: 234-241.
  • Johnson HA, Pavelec M. Thermal noise in cells: A cause of spontaneous loss of cell junction. Am J. Pathol. 1972; 69: 119-130.
  • Spiro IJ, Denman DL, Dewey WC. Effect of hyperthermia on CHO DNA polymerases alpha and beta. Radiat. Res. 1982; 89: 134-149.
  • Miller MW, Nyborg WL, Dewey WC, Edwards MJ, Abramowicz JS, and Brayman AA. Hyperthermic teratogenicity, thermal dose and diagnostic ultrasound during pregnancy: implications of new standards on tissue heating. Int. J Hyperthermia 2002; 18: 361-384.
  • Dickson JA, Shah DM. The effects of hyperthermia (42°C) on the biochemistry and growth of a malignant cell line. Eur J. Cancer 1972; 8: 561-571.
  • Lepock JR. 1987 Membrane lipids and proteins. In: Henle, KJ, ed. Thermo tolerance. Volume II Mechanisms of Heat Resistance. Boca Raton, FL: CRC Press, 1987, pp. 47-82.
  • Wimberly BT, Brodersen DE, demons WM, Morgan-Warren RJ, Carter AP, Vonrheim, C, Hartsch T, Ramakrishan V. Structure of the 30S ribosomal subunit. Nature 2001; 407: 327-339.
  • Privalov PL, Khechinashvili NN. A thermodynamica approach to the stabilization of globular protein structure. A calorimetric study. J. MoI Biol. 1974; 86: 665-684.
  • Freeman ML, Borrelli MJ, Meredith MJ, Lepock JR. On the path to the heat shock response. Free Radical Biol Med. 1999; 26: 737-745.
  • Laszlo A. The effects of hyperthermia on mammalian cell structure and function. Cell Prolif. 1992; 25: 59-87.
  • Tesfay HS, Amelunxen RE, Goldberg ID. Nucleotide sequences of genes encoding heatstable and heat-labile glyceraldehyde-3-phosphate dehydrogenases; anino acid sequence and protein thermostability. Gene 1989; 82: 237-248.
  • Matsumura M, Yasumura S, Shuichi A, Cummulative effect of intragenic amino-acid replacements on the thermostability of a protein. Nature 1986; 323: 356-358.
  • Becker J, Craig EA. Heat shock proteins as molecular chaperones. Eur J. Biochem. 1994; 219: 11-23.
  • Frydman F. Folding of newly translated proteins In Vivo: The role of molecular chaperones. Anna Rev Biochem 2001; 70: 603-647.
  • Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 2002; 295: 1852-1858.
  • Gottesman S, Wickner S, Maurizi MR. Protein quality control: triage by chaperones and proteases. Genes Develop. 1997; 11: 815-823.
  • Jolly C, Morimoto RI. Role of heat shock response and molecular chaperones in oncogenesis an cell death. J. NatI Cancer Inst. 2000; 92: 1564-1572.
  • Kregel KC. Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J. Appl Physiol. 2002; 92: 2177-2186.
  • Zuo JR, Rungger D, Voellmy R. Multiple layers of regulation of human heat shock transcription factor 1. MoI Cell Biol. 1995; 15: 4309-4430.
  • Landry J, Lamarche S, Cretien P. Heat shock proteins: a lead to the understanding of cell thermotolerance. In: Henle, KJ, ed., Thermotolerance, Volume I, Boca Raton, FL: CRC Press, 1987, 145-177.
  • Mifflin LC, Cohen RE. Characterization of denatured protein inducers of the heat shock (stress) response in xenopus laevis oocytes. J. Biol Chem. 1994; 269: 15710-15717.
  • Liu AY, Bian H, Huang LE, Lee Y K. Transient cold shock induces the heat shock response upon recovery at 37 degrees C in human cells. J. Biol Chem. 1994; 269: 14768-14775.
  • Lee YJ, Dewey WC. Protection of Chinese hamster ovary cells from hyperthermic killing by cyclohexamide or puromycin. Radiat Res. 1986; 106: 98-110.
  • Dewey WC, Westra A, Miller HH, Nagasawa H. Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. Int J. Radiat Bio. 1971; 20: 505-520.
  • Dewey WC. The search for critical targets damaged by heat. Radiat Res. 1989; 120: 191204.
  • Vidair CA, Doxsey SJ, Dewey WC. Heat shock alters centrosome organization leading to mitotic dysfunction and cell death. J. Cell Physiol. 1993; 154: 443-455.
  • VanderWaal, RP, Wright WD, Roti Roti JL. The effects of heat-shock on nuclear matrixassociated DNA replication complexes. Crit Rev Eukaryot Gene Expr. 1999; 9: 363-371.
  • Amelunxen RE. Murdock AL. Mechanisms of thermophily. CRC Crit Rev Microbiol. 1978; 6: 343-372.
  • McElhaney RN. Effects of membrane lipids on transport and enzymatic activities. Curr Top Membr Transport 1982; 17: 317-342.
  • Mikkelsen RB, Koch B. Thermosensitivity of the membrane potential of normal and simian virus transformed hamster lymphocytes. Cancer Res. 1981; 41: 209-215.
  • Mikkelsen RB, Asher CR. Effects of hyperthermia on the membrane potential and Na+ transport of V79 fibroblasts. J. Cell Physiol. 1990: 144: 216-221.
  • Borrelli MJ, Rausch CM. Microelectrode measurements of the transmembrane potential in baby hamster kidney, Chinese hamster ovary, NG108-15 neuroblastoma and swiss 3T3 cells at 37.0 or 43.O°C. Int. J Hyperthermia 1991; 7: 827-838.
  • Stevenson MA, Minton KW, Hahn GM. Survival and concanavalin-A-induced capping in CHO fibroblasts after exposure to hyperthermia, ethanol, and X irradiation. Radiat Res. 1981; 86: 467-478.
  • Sultan MF, Tompkins WA, Cain CA. Hyperthermia enhancement of antibody-complement cytotoxicity against normal mouse B lymphocytes and its relation to capping. Radiat Res. 1983; 96: 251-260.
  • Calderwood SK, Hahn GM. Thermal sensitivity and resistance of insulin-receptor binding. Biochim Biophys Ada. 1983; 756: 1-12.
  • Magun BE, Fennie CW. Effects of hyperthermia on binding, intemalization, and degradation of epidermal growth factor. Radiat Res. 1981; 86: 133-146.
  • Medhi SQ, Recktenwald DJ, Smith LM, Li GC, Armour EP, Hahn GM. The effect of hyperthermia on murine cell surface histocompatibility antigens. Cancer Res. 1984; 44: 3394-3397.
  • Lin PS. Cytoskeleton and modified heat sensitivity. In: Henle, KJ, ed. Thermotolerence. Volume II mechanisms of heat resistance. Boca Raton, FL: CRC Press, Inc. 1987, pp. 83104.
  • Borrelli MJ, Wong RSL, Dewey WC. A direct correlation between hyperthermia-induced membrane blebbing and survival in synchronous G1 CHO cells. J. Cell Physiol. 1986; 126: 180-190.
  • Coss RA. Linnemans WAM. The effects of hyperthermia on the cytoskeleton: A review. Int J. Hyperthermia 1996; 12: 173-196.
  • Nguyen VT, Morange M, Bensaude O. Protein denaturation during heat shock and related stress. Escherichia coli Beta Galactosidase and Photinus pyralis Luciferase Inactivation in Mouse Cells. J. Biol Chem. 1989; 264: 10487-10492.
  • Roti Roti, JL, Laszlo A. 1988. The effects of hyperthermia on cellular macromolecules. In: Urano M and Douple EB, eds, Hyperthermia and Oncology, Vol. 1, Zeist, The Netherlands: VSP, 1988, 13-56.
  • Wang XY, Ostberg JR, Repasky EA. Effect of fever-like whole-body hyperthermia on lymphocyte spectrin distribution, protein kinase C activity, and uropod formation. J. Immunol. 1999; 162: 3378-3387.
  • Kampinga HH, Dikomey E. Hyperthermic radiosensitization: mode of action and clinical relevance. Int J. Radiat Biol. 2001; 77: 399-408.
  • Xu M, Wright WD, Higashikubo R, Wang LL, Roti Roti, JL. Thermal radiosensitization of human tumor cell lines with different sensitivities to 41.1°C. Int J. Hyperthermia 1999; 15: 279-290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.