175
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Effects of heat shock on the Mre11/Rad50/Nbs1 complex in irradiated or unirradiated cells

, , , &
Pages 144-156 | Received 17 Jul 2003, Accepted 17 Oct 2003, Published online: 09 Jul 2009

References

  • Ben-Hur E, Elkind MM, Bronk By. Thermally enhanced radioresponse of cultured Chinese hamster cells: inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat Res 1974; 58: 38–51.
  • Dewey WC, Sapareto SA, Betten DA. Hyperthermic radiosensitization of synchronous Chinese hamster cells: relationship between lethality and chromosomal aberrations. Radiat Res 1978; 76: 48–59.
  • Falk MH, Issels RD. Hyperthermia in oncology. Int J Hypertherrnia 2001; 17: 1–18.
  • Van der Zee J. Heating the patient: a promising approach. Ann Oncol 2002; 13: 1173–84.
  • Hahn GM. Hypertherrnia and Cancer, New York: Plenum, 1982.
  • Laszlo A. The effects of hyperthermia on mammalian cell structure and function. Cell Prolif 1992; 25: 59–87.
  • Dewey WC. Failla Memorial Lecture: The search for critical cellular targets damaged by heat. Radiat Res 1989; 120: 191–204.
  • Coss RA, Dewey WC, Bamburg JR. Effects of hyperthermia on dividing Chinese hamster ovary cells and on microtubules in vitro. Cancer Res 1982; 42: 1059–71.
  • Vidair CA, Doxsey Si, Dewey WC. Heat shock alters centrosome organization leading to mitotic dysfunction and cell death. J Cell Physiol 1993; 154: 443–55.
  • Ohtsuka K, Liu YC, Kaneda T. Cytoskeletal thermotolerance in NRK cells. Int J Hypertherrnia 1993; 9: 115–24.
  • Lepock JR, Cheng KB, Al-Qysi H, Kruuv J. Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: relationship to hyperthermic cell killing. Can J Biochent 1983; 61: 421–7.
  • Lepock JR, Frey HE, Rodahl AM, Kruuv J. Thermal analysis of CHL V79 cells using differential scanning calorimetry: implications for hyperthermic cell killing and the heat shock response. J Cell Physiol 1988; 137: 14–24.
  • Freeman ML, Borrelli MJ, Meredith MJ, Lepock JR. On the path to the heat shock response: Destabilization and formation of partially folded protein intermediates, a con-sequence of protein thiol modification. Free Radic Biol Med 1999; 26: 737–45.
  • Westra A, Dewey WC. Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol 1971; 19: 467–77.
  • Hall EJ, Radiobiology for the Radiologist, 5th edn, Philadelphia: Lippincott, Williams & Wilkins, 2000.
  • Dikomey E. Effect of hyperthermia at 42 and 45°C on repair of radiation-induced DNA strand breaks in CHO cells. Int J Radiat Biol Relat Stud Phys Chem Med 1982; 41: 603–14.
  • Warters RL, Axtell J. Repair of DNA strand breaks at hyperthermic temperatures in Chinese hamster ovary cells. Int J Radiat Biol 1992; 61: 43–8.
  • Corry PM, Robinson S, Getz S. Hyperthermic effects on DNA repair mechanisms. Radiology 1977; 123: 475–82.
  • Mills MD, Meyn RE. Effects of hyperthermia on DNA repair mechanisms. Radiat Res 1981; 87: 314–28.
  • Radford IR. Effects of hyperthermia on the repair of X-ray induced DNA double strand breaks in mouse L cells. Int J Radiat Biol 1983; 5: 551–7.
  • Wong RSL, Dynlacht J, Cedervall B, Dewey WC. Analysis by pulsed field gel electro-phoresis of DNA double-strand breaks induced by heat and/or X-irradiation in bulk and replicating DNA of CHO cells. Int J Radiat Biol 1995; 68: 141–52.
  • Xu M, Myerson RJ, Straube WL, Moros EG, Lagroye I, Wang LL, Lee JT, Roti Roti JL. Radiosensitization of heat resistant human tumour cells by 1 hour at 41.1°C and its effect on DNA repair. Int J Hypertherrnia 2002; 18: 385–403.
  • Roti Roti JL, Wright WD, VanderWaal R. The nuclear matrix: a target for heat shock effects and a determinant for stress response. Crit Rev Euk Gen Exp 1997; 7: 343–60.
  • Spiro I.1, Denman DL, Dewey WC. Effect of hyperthermia on CHO DNA polymerases a and 13. Radiat Res 1982; 89: 134–49.
  • Warters RL, Roti Roti JL. Excision of X-ray-induced thymine damage in chromatin from heated cells. Radiat Res 1979; 79: 113–21.
  • Kampinga HH, Joritsma JBM, Konings AWT. Heat-induced alterations in DNA poly-merase activity of HeLa cells and isolated nuclei. Int J Radiat Biol 1985; 47: 29–40.
  • Kampinga HH, Konings AWT. Inhibition of repair of X-ray induced DNA damage by heat. I. The role of hyperthermia inhibition of DNA polymerase alpha activity. Radiat Res 1987; 112: 86–98.
  • Raaphorst GP, Feelewy MM, Chu GL, Dewey WC. A comparison of the effect of hyperthermia on DNA polymerase in hamster and human glioma cells. Int J Hypertherrnia 1993; 9: 303–12.
  • Tomasovic SP, Turner GN, Dewey WC. Effects of hyperthermia on non-histone proteins isolated with DNA. Radiat Res 1978; 73: 535–52.
  • Roti Roti JL, Winward RT. The effects of hyperthermia on the protein to DNA ratio of isolated HeLa chromatin. Radiat Res 1978; 74: 159–69.
  • Chu GL, Ross G, Wong RSL, Warters R, Dewey WC. Content of nonhistone protein in nuclei after hyperthermic treatment. J Cell Physiol 1993; 154: 217–21.
  • Kampinga HH, Muller E, Brunsting JF, Heine L, Konings AWT and Issels RD. Association of HSP72 with the nuclear (TX-100-insoluble) fraction upon heating tolerant and non-tolerant HeLa S3 cells. Int J Hypertherrnia 1993; 9: 89–98.
  • Stege GJ, Kampinga HH, Konings AW. Heat-induced intranuclear protein aggregation and thermal radiosensitization. Int J Radiat Biol 1995; 67: 203–9.
  • Wachsberger PR, Coss RA. Alterations in nuclear matrix ultrastructure of G1 mamma-lian cells following heat shock: resinless section electron microscopy, biochemical and immunofluorescence studies. J Cell Physiol 1993; 155: 615–34.
  • Warters R, Brizgys L, Lyons B. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair. Int J Radiat Biol 1987; 52: 299–313.
  • Laszlo A, Wright W, Roti Roti JL. Initial characterization of heat-induced excess proteins in HeLa cells. J Cell Physiol 1992; 151: 519–32.
  • Berezney R, Mortillaro MJ, Ma H, Wei X, Samarabandu J. The nuclear matrix: a struc-tural milieu for genomic function. In: Berezney R, Jeon KW, eds, Nuclear Matrix: Structural and Functional Organization, San Diego: Academic Press, 1995; pp. 2–54.
  • Koehler DR, Hanawalt PC. Recruitment of damaged DNA to the nuclear matrix in hamster cells following ultraviolet irradiation. Nucleic Acids Res 1996; 24: 2877–84.
  • Nelms BE, Maser RS, MacKay JF, Lagally MG, Petrini JHJ. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 1998; 280: 590–2.
  • Sakkers R, Filon A, Brunsting J, Kampinga HH, Mullenders L, Konings AWT. Heat-shock treatment selectively affects induction and repair of cyclobutane pyrimidine dimers in transcriptionally active genes in ultraviolet-irradiated human fibroblasts. Radiat Res 1993; 135: 343–50.
  • Warters RL. Hyperthermia blocks DNA processing at the nuclear matrix. Radiat Res 1988; 115: 258–72.
  • Kampinga HH, Luppes JG, Konings AWT. Heat-induced nuclear protein binding and its relation to thermal cytotoxicity. Int j Hypertherrnia 1987; 3: 459–65.
  • Kampinga HH, Turkel-Uygur N, Roti Roti JL, Konings AWT. The relationship of increased nuclear protein content induced by hyperthermia to killing of HeLa S3 cells. Radiat Res 1989; 117: 511–22.
  • Wong RSL, Kapp LN, Dewey WC. DNA fork displacement rate measurements in heated Chinese hamster ovary cells. Biochirn Biophys Acta 1989; 1007: 224–7.
  • Higashikubo R, Roti Roti JL. Alterations in nuclear protein mass and macromolecular synthesis following heat shock. Radiat Res 1993; 134: 193–201.
  • Jorritsma JB, Kampinga HH, Scaf AH, Konings AW. Strand break repair, DNA poly-merase activity and heat radiosensitization in thermotolerant cells. Int J Hypertherrnia 1985; 1: 131–45.
  • Burgman P, Ouyang H, Peterson S, Chen DJ, Li GC. Heat inactivation of Ku autoanti-gen: possible role in hyperthermic radiosensitization. Cancer Res 1997; 57: 2847–50.
  • Matsumoto Y, Suzuki N, Morimatsu A, Murofushi H. A possible mechanism for hyperthermic radiosensitization mediated through hyperthermic lability of Ku subunits in DNA-dependent protein kinase. Biochern Biophys Res Cornrnun 1997; 234: 568–72.
  • Thompson LH, Schild D. Homologous recombinational repair of DNA ensures mamma-lian chromosome stability. Mutat Res 2001; 477: 131–53.
  • Thompson LH, Schild D. Recombinational DNA repair and human disease. Mutat Res 2002; 509: 49–78.
  • Takata M, Sasaki MS, Sonoda E, Morrison C, Hashimoto M, Utsumi H, Yamaguchi-Iwai M, Shinohara A, Takeda S. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J 1998; 17: 5497–508.
  • Taccioli GE, Gottieb TM, Blunt T, Priestley A, Demengeot J, Mituta R, Lehmann AR, Alt FW, Jackson SP, Jeggo PA. Ku80: product of the XRCC5 gene. Role in DNA repair and V(D)J recombination. Science 1994; 265: 1442–5.
  • Feldmann E, Schmiemann V, Goedecke W, Reichenberger S, Pfeiffer P. DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: Implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res 2000; 28: 2585–96.
  • Beck BD, Dynlacht JR. Heat-induced aggregation of XRCC5 (Ku80) in nontolerant and thermotolerant cells. Radiat Res 2001; 156: 767–74.
  • Dynlacht JR, Bittner ME, Bethel JA, Beck BD. The non-homologous joining pathway is not involved in the radiosensitization of mammalian cells by heat shock. J Cell Physiol. 2003; 196: 557–64.
  • Yang S, Nussenzweig A, Yang W, Kim D, Li GC. Cloning and characterization of Rat Ku70: involvement of Ku autoantigen in the heat-shock response. Radiat Res 1996; 146: 603–11.
  • Ihara M, Suwa A, Komatsu K, Shimasaki T, Okaichi K, Hendrickson EA, Okumura Y. Heat sensitivity of double-stranded DNA-dependent protein kinase (DNA-PK) activity. Int J Radiat Biol 1989; 75: 253–8.
  • Maids G, Seaner R. A DNA double-strand break repair-deficient mutant of CHO cells shows reduced radiosensitization after exposure to hyperthermic temperatures in the plateau phase of growth. Int J Hypertherrnia 1990; 6: 801–12.
  • Woudstra EC, Konings AWT, Jeggo PA, Kampinga HR. Role of DNA-PK subunits in radiosensitization by hyperthermia. Radiat Res 1999; 152: 214–18.
  • Kampinga HH, Dynlacht JR, Dikomey E. Mechanism of radiosensitization by hyperther-mia (43°C) as derived from studies with DNA repair defective mutant cell lines. Int J Hypertherrnia 2004; 20: 131–139.
  • Zhu WG, Seno J, Beck BD, Dynlacht JR. Translocation of Mrell from the nucleus to the cytoplasm as a mechanism of radiosensitization by heat. Radiat Res 2001; 156: 92–102.
  • Xu M, Myerson RJ, Hunt C, Kumar S, Moros EG, Straube WL, Roti Roti JL. Transfection of human tumor cells with Mrel 1 siRNA increases radiation sensitivity and reduces heat induced radiosensitization. Int J Hypertherrnia 2004; 20: 157–162.
  • Seno JD, Dynlacht JR. Intracellular redistribution and phosphorylation of proteins of the Mrell/Rad5O/Nbs1 repair complex following irradiation and heat-shock. J Cell Physiol (in press).
  • Hopfner KP, Putna CD, TaMer JA. DNA double-strand break repair from head to tail. Curr Opinion in Struct Biol 2002; 12: 115–22.
  • Goedecke W, Eijpe M, Offenberg HH, Aalderen MV, Heyting C. Mrel 1 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 1999; 23: 194–8.
  • De la Torre C, Pincheira J, Lopez-Saez JF. Human syndromes with genomic instability and multiprotein machines that repair DNA double-strand breaks. Histol Histopathol 2003; 18: 225–43.
  • Dolganov GM, Maser RS, Novikov A, Tosto L, Chong S, Bressan DA, Petrini JH. Human Rad50 is physically associated with human Mrel 1: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol 1996; 16: 4832–41.
  • Maser RS, Mosen KJ, Nelms B, Petrini JR. hMrell and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol Cell Biol 1997; 17: 6087–96.
  • Mirzoeva OK, Petrini JR. DNA damage-dependent nuclear dynamics of the Mrell com-plex. Mol Cell Biol 2001; 21: 281–8.
  • Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR, Hays L, Morgan WF, Petrini JR. The hMrell/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998; 93: 477–86.
  • Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KR, Saar K, Beckmann G, Seemanova E, Cooper PR, Nowak NJ, Stumm M, Weemaes CM, Gatti RA, Wilson RK, Digweed M, Rosenthal A, Sperling K, Concannon P, Reis A. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 1998; 93: 467–76.
  • Paull TT, Gellert M. Nbs 1 Potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mrell/Rad50 complex. Genes Dev 1999; 13: 1276–88.
  • Cerosaletti KM, Desai-Mehta A, Yeo TC, Kraakman-van der Zwet M, Zdzienicka MZ, Concannon P. Retroviral expression of the NBS1 gene in cultured Nijmegen breakage syndrome cells restores normal radiation sensitivity and nuclear focus formation. Mutagenesis 2000; 15: 281–6.
  • Digweed M, Reis A, Sperling K. Nijmegen breakage syndrome: consequences of defective DNA double strand break repair. BioEssays 1999; 21: 649–56.
  • Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A, Petrini JHJ. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci USA 1999; 96: 7376–81.
  • Yamaguchi-Iwai Y, Sonoda E, Sasaki MS, Morrison C, Haraguchi T, Hiraoka Y, Yamashita YM, Yagi T, Takata M, Price C, Kakazu N, Takeda S. Mrel 1 is essential for the maintenance of chromosomal DNA in vertebrate cells. EMBO J 1999; 18: 6619–29.
  • Paull TT, Gellert M. The 3' to 5' exonuclease activity of Mrell facilitates repair of DNA double-strand breaks. Molecular Cell 1998; 1: 969–79.
  • Raymond WE, Kleckner N. RAD50 protein of S. cerevisiae exhibits ATP-dependent DNA binding. Nucleic Acids Res 1993; 21: 3851–6.
  • De Jager M, Dronkert MLG, Modesti M, Beerens CEMT, Kanaar R, van Gent DC. DNA-binding and strand-annealing activities of human Mrell: implications for its roles in DNA double-strand break repair pathways. Nucleic Acids Res 2001; 29: 1317–25.
  • Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S, Lavin MF, Gatti RA, Concannon P, KumKum K. ATM-dependant phosphorylation of nibrin in response to radiation exposure. Nature Genetics 2000; 25: 115–19.
  • Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JR, Kastan MB. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 2000; 404: 613–17.
  • Wu X, Ranganathan V, Weisman DS, Heine WF, Ciccone DN, O'Neill TB, Crick KE, Pierce KA, Lane WS, Rathbun G, Livingston DM, Weaver DT. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 2000; 405: 477–82.
  • Zhao S, Weng YC, Yuan SS, Lin YT, Hsu HC, Lin SC, Gerbino E, Song MH, Zdzienicka MZ, Gatti RA, Shay JW, Ziv Y, Shiloh Y, Lee EY. Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 2000; 405: 473–7.
  • Buscemi G, Savio C, Zannini L, Micciche F, Masnada D, Nakanishi M, Tauchi H, Komatsu K, Mizutani S, Khanna K, Chen P, Concannon P, Chessa L, Delia D. Chk2 activation dependence on Nbsl after DNA damage. Mol Cell Biol 2001; 21: 5214–22.
  • Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG, Raams A, Byrd PJ, Petrini JR, Taylor MR. The DNA double-strand break repair gene hMREll is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 1999; 99: 577–87.
  • Copco DG, Wan KM, Penman S. The nuclear matrix: three-dimensional architecture and protein composition. Cell 1982; 29: 847–58.
  • Fey EG, Krochmalnic G, Penman S. The non-chromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analysed by sequential fractionation and resinless section electron microscopy. J Cell Biol 1986; 102: 1654–65.
  • He D, Nickerson JA, Penman S. Core filaments of the nuclear matrix. J Cell Biol 1990; 110: 569–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.