79
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Hsp27 anti-sense oligonucleotides sensitize the microtubular cytoskeleton of Chinese hamster ovary cells grown at low pH to 42°C-induced reorganization

, , , , &
Pages 491-502 | Received 29 Jan 2002, Accepted 18 Mar 2004, Published online: 09 Jul 2009

References

  • Wahl ML, Coss RA, Bobyock SB, Leeper DB, Owen CS. Thermotolerance and intracel-lular pH in two Chinese hamster cell lines adapted to growth at low pH. J Cell Physiol 1996; 166: 438–45.
  • Wahl ML, Bobyock SB, Leeper DB, Owen CS. Effects of 42°C hyperthermia on intracellular pH in ovarian carcinoma cells during acute or chronic exposure to low extracellular pH. Int J Radiat Oncol Biol Phys 1997; 39: 205–12.
  • Coss RA, Messinger JA, Wahl ML, Wachsberger PR, Leeper DB, Owen CS. Bicarbonate-dependent proton extrusion in Chinese hamster ovary (CHO) cells adapted to growth at pH 6.7. Int J Hypertherrnia 1997; 13: 325–36.
  • Chu GL, Dewey WC. The role of low intracellular or extracellular pH in sensitization to hyperthermia. Radiat Res 1988; 114: 154–67.
  • Hahn GM, Shiu EC. Adaptation to low pH modifies thermal and thermo-chemical responses of mammalian cells. Int J Hypertherrnia 1986; 2: 379–87.
  • Cook J, Fox M. Effects of chronic pH 6.6 on growth, intracellular pH, and response to 42°C hyperthermia of Chinese hamster ovary cell. Cancer Res 1988; 48: 2417–20.
  • Owen CS, Pooler PM, Wahl ML, Coss RA, Leeper DB. Altered proton extrusion in cells adapted to growth at low extracellular pH. J Cell Physiol 1997; 173: 397–405.
  • Coss RA, Sistrun S, Storck C, Wachsberger PR. Response of the cytoskeleton and nuclear matrix to 42°C in Chinese hamster ovary (CHO) cells adapted to growth at pH 6.7. Hypertherrnic Oncol 1996; 2: 678–9.
  • Coss RA, Sedar AW, Sistrun SS, Storck CW, Wang PH, Wachsberger PR. Hsp27 protect the cytoskeleton and nucleus from the effects of 42°C at pH 6.7 in CHO cells adapted to growth at pH 6.7. Int j Hypertherrnia 2002; 18: 216–32.
  • Wachsberger PR, Landry J, Storck C, Davis K, O'Hara MD, Owen CS, Leeper DB, Coss RA. Mammalian cells adapted to growth at pH 6.7 have elevated H5P27 levels and are resistant to cisplatin. Int j Hypertherrnia 1997; 13: 251–5.
  • Lindquist S. The heat-shock response. Annu Rev Biochern 1986; 55: 1151–91.
  • Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet 1988; 22: 631–77.
  • Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 2000; 92: 1564–72.
  • Charette SJ, Lavoie JN, Lambert H, Landry J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 2000; 20: 7602–12.
  • Jaattela M. Escaping cell death: survival proteins in cancer. Exp Cell Res 1999; 248: 30–43.
  • Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C. Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochern Biophys Res Commun 2003; 304: 505–12.
  • Lin PS. Cytoskeleton and modified cellular heat sensitivity. In: Henle KJ, ed., Therrnotolerance, Vol. II, Boca Raton: CRC Press, 1987; 83–104.
  • Laszlo A. The effects of hyperthermia on mammalian cell structure and function. Cell Proliferation 1992; 25: 59–87.
  • Coss RA, Linnemans WAM. The effects of hyperthermia on the cytoskeleton. Int J Hypertherrnia 1996; 12: 173–96.
  • Wachsberger PR, Coss RA. Acrylamide sensitization of the heat response of the cytoske-leton and cytotoxicity in attaching and well-spread synchronous Chinese hamster ovary cells. Cell Motil Cytoskeleton 1989; 13: 67–82.
  • Wachsberger PR, Coss RA. Effects of hyperthermia on the cytoskeleton and cell survival in G1 and S phase Chinese hamster ovary cells. Int J Hypertherrnia 1990; 6: 67–85.
  • Landry J, Chretien P, Lambert H, Hickey E, Weber LA. Heat shock resistance conferred by expression of the human Hsp27 gene in rodent cells. J Cell Biol 1989; 109: 7–15.
  • Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J. Induction of Chinese hamster Hsp27 gene expression in mouse cells confers resistance to heat shock. Hsp27 stabilization of the microfilament organization. J Biol Chem 1993; 268: 3420–9.
  • Richards EH, Hickey E, Weber L, Masters JRW. Effect of overexpression of the small heat shock protein Hsp27 on the heat and drug sensitivities of human testis tumor cells. Cancer Res 1996; 56: 2446–51.
  • Lavoie JN, Hickey E, Weber LA, Landry J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat-shock protein 27. J Biol Chem 1993; 268: 24210–4.
  • Mourner N, Arrigo AP. Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 2002; 7: 167–76.
  • Miron T, Vancompernolle K, Vanderkerckhove J, Wilchek M, Geiger B. A 25-kD inhibitor of actin polymerization is a low molecular mass heat-shock protein. J Cell Biol 1991; 114: 255–61.
  • Landry J, Chretien P, Laszlo A, Lambert H. Phosphorylation of H5P27 during development and decay of thermotolerance in Chinese hamster cells. J Cell Physiol 1991; 147: 93–101.
  • Benndorf R, Hayess S, Ryazantsev S, Wieske M, Behlke J, Lutsch G. Phosphorylation and supramolecular organization of murine small heat shock protein Hsp25 abolish its actin polymerization-inhibiting activity. J Biol Chem 1994; 269: 20780–4.
  • Lavoie JN, Lambert H, Hickey E, Weber LE, Landry J. Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol and Cell Biol 1995; 15: 505–16.
  • Kato K, Hasgawa K, Goto S, Inaguma Y. Dissociation as a result of phosphorylation of an aggregated form of the small stress protein Hsp27. J Biol Chem 1994; 269: 11274–8.
  • Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J. Regulation of actin filament dynamics by p38 map-kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997; 110: 357–68.
  • Borrelli MJ, Bernock Li, Landry J, Spitz DR, Weber LA, Hickey E, Freeman ML, Corry PM. Stress protection by a fluorescent Hsp27 chimera that is independent of nuclear translocation or multimeric dissociation. Cell Stress Chaperones 2002; 7: 281–96.
  • Coss RA, Dewey WC, Bamburg JR. Effects of hyperthermia on dividing Chinese hamster ovary cells and on microtubules in vitro. Cancer Res 1982; 42: 1059–71.
  • Coss RA, Alden ME, Wachsberger PR, Smith NN. Response of the microtubular cyto-skeleton following hyperthermia as a prognostic indicator of survival of Chinese hamster ovary cells. Int J Radiat Oncol Biol Phys 1996; 34: 403–10.
  • Hino M, Kurogi K, Okubo MA, Murata-Hori M, Hosoya H. Small heat shock protein 27 (H5P27) associates with tubulin/microtubules in HeLa cells. Biochern Biophys Res Comm 2000; 271: 164–9.
  • Arai H, Atomi Y. Chaperone activity of alpha B-crystallin suppresses tubulin aggregation through complex formation. Cell Struct Funct 1997; 22: 539–44.
  • Day RM, Gupta JS, MacRae TH. A small heat shock/alpha-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress Chaperones 2003; 8: 183–93.
  • Atomi Y, Fujita Y, Ohto E, Tanaka M, Sakurai T, Katayama E. Role of aB-crystallin for cytoskeleton tubulin/microtubule: to keep dynamic property in muscle and glioma cells. Proc 1st Int Cong Stress Responses Biol Med 2003; Quebec City, Canada, 42.
  • Wickstrom E. Prospects for ant isense nucleic acid therapy of cancer and AIDS. New York: Wiley-Liss, Inc, 1991.
  • Murray JAH. Antisense RNA and DNA. New York: Wiley-Liss, Inc, 1992.
  • Crooke ST, Lebleu B. Antisense research and applications. Boca Raton FL: CRC Press, 1993.
  • Akhtar S. Delivery Strategies for Antisense Oligonucleotide Therapeutics. Boca Raton FL: CRC Press, 1995.
  • Wickstrom E, Tyson FL. Differential oligonucleotide activity in cell culture versus mouse models. Ciba Found Symp 1997; 209: 124–37.
  • Agrawal S. Oligonucleotide therapeutic approach: Near clinical development. New York: Humana Press, 1996.
  • Smith JB, Wickstrom E. Antisense c-myc and immunostimulatory oligonucleotide inhibition of tumorigenesis in a murine B-cell lymphoma transplant model. J Natl Cancer Inst 1998; 90: 1146–54.
  • Wickstrom E, ed. Clinical trials of genetic therapy with antisense DNA and DNA vectors. New York: Marcel Dekker, Inc., 1998.
  • Oesterreich S, Weng CN, Qiu M, Hilsenbeck SG, Osborne CK, Fuqua SA. The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res 1993; 53: 4443–8.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochern 1976; 72: 248–54.
  • de Ondarza J, Hootman SR. Confocal microscopic analysis of intracellular pH regulation in isolated guinea pig pancreatic ducts. Am J Physiol 1997; 272: G124–34.
  • Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E. H5P27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 1999; 13: 2061–70.
  • Pandey P, Farber R, Nakazawa A, Kumar S, Bharti A, Nalin C, Weichselbaum R, Kufe D, Kharbanda S. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 2000; 19: 1975–81.
  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000; 2: 645–52.
  • Concannon CG, Orrenius S, Samali A. Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 2001; 9: 195–201.
  • Concannon CG, Gorman AM, Samali A. On the role of Hsp27 in regulating apoptosis. Apoptosis 2002; 8: 61–70.
  • LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 1998; 17: 3247–59.
  • Jaattela M. Heat shock proteins as cellular lifeguards. Ann Med 1999; 31: 261–71.
  • Cande C, Cohen I, Daugas E, Ravagnan L, Larochette N, Zamzami N, Kroemer G. Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochirnie 2002; 84: 215–22.
  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nature Cell Biol 2000; 21: 476–83.
  • Morimoto RI. Heat shock: the role of transient inducible responses in cell damage, transformation, and differentiation. Cancer Cells 1991; 3: 295–301.
  • Fuller KJ, Issels RD, Slosman DO, Guillet JG, Soussi T, Polla BS. Cancer and the heat shock response. Eur J Cancer 1994; 30A: 1884–91.
  • Coss RA, Storck CW, Wachsberger PR, Reilly J, Leeper DB, Berd D, Wahl ML. Acute extracellular acidification reduces intracellular pH, 42°C-induction of heat shock proteins and clonal survival of human melanoma cells grown at pH 6.7. Int J Hypertherrnia 2004; 20: 93–106.
  • Ciocca DR, Oesterreich S, Chamness GC, McGuire WL, Fuqua SA. Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 1993; 85: 1558–70.
  • Burd R, Lavorgna SN, Daskalakis C, Wachsberger PR, Wahl ML, Biaglow JE, Stevens CW, Leeper DB. Tumor oxygenation and acidification are increased in melanoma xenografts after exposure to hyperglycemia and meta-iodo-benzylguanidine. Radiat Res 2003; 159: 328–35.
  • Coss RA, Storck CW, Daskalakis C, Berd D, Wahl ML. Intracellular acidification abrogates the heat shock response and compromises survival of human melanoma cells. Mol Cancer Ther 2003; 2: 383–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.