1,456
Views
160
CrossRef citations to date
0
Altmetric
Review

The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system

, , , &
Pages 379-392 | Received 25 Oct 2004, Accepted 07 Feb 2005, Published online: 09 Jul 2009

References

  • Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 1962;17:571–573.
  • Gerner EW, Schneider MJ. Induced thermal resistance in HeLa cells. Nature (London) 1975;256:500–502.
  • Schlesinger ML, Ashburner M, Tissiéres A. Heat shock: From bacteria to man. New York: Cold Spring Harbor Laboratory Press; 1982.
  • Kappé G, Franck E, Verschuure P, Boelens WC, Leunissen JAM, Jong WW. The human genome encodes 10 a-crystallin-related heat shock proteins: HspB1-10. Cell Stress Chaperones 2003;8: 53–61.
  • Plumier J.-CL, Hopkins DA, Robertson HA, Currie RW. Constitutive expression of the 27-kDa heat shock protein (Hsp27) in sensory and motor neurons of the rat nervous system. Journal of Computational Neurology 1997;384: 409–428.
  • Morimoto RI, Sarge KD, Abravaya K. Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. Journal of Biological Chemistry 1992;267:21987–21990.
  • Manzerra P, Rush SJ, Brown IR. Tissue-specific differences in heat shock protein hsc70 and hsp70 in the control and hyperthermic rabbit. Journal of Cell Physiology 1997;170: 130–137.
  • Krueger AM, Armstrong JN, Plumier J, Robertson HA, Currie RW. Cell specific expression of Hsp70 in neurons and glia of the rat hippocampus after hyperthermia and kainic acid-induced seizure activity. Molecular Brain Research 1999;71: 265–278.
  • Armstrong JN, Plumier, J.-CL, Robertson, HA, Currie, RW. The inducible 70,000 molecular/weight heat shock protein is expressed in the degenerating dentate hilus and piriform cortex after systemic administration of kainic acid in the rat. Neuroscience 1996;74: 685–693.
  • Currie RW, Ellison JA, White RF, Feuerstein GZ, Wang X, Barone FC. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Research 2000;863:169–181.
  • Tytell M, Barbe MF, Brown IR. Induction of heat shock (stress) protein 70 and its mRNA in the normal and light-damaged rat retina after whole body hyperthermia. Journal of Neuroscience Research 1994;38: 19–31.
  • Dean DO, Kent CR, Tytell M. Constitutive and inducible heat shock protein 70 immunoreactivity in the normal rat eye. Investigative Ophthalmology & Visual Science 1999;40: 2952–2962.
  • Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of the 25-kDA heat shock protein Hsp25 reveals novel parasagittal bands of purkinje cells in the adult mouse cerebellar cortex. Journal of Computational Neurology 2000;416:383–397.
  • Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Expression of heat shock protein Hsp25 in mouse purkinje cells during development reveals novel features of cerebellar compartmentation. Journal of Computational Neurology 2001;429:7–21.
  • Krueger-Naug AMR, Hopkins DA, Armstrong JN, Plumier J.-CL, Currie RW. Hyperthermic induction of the 27-kDa heat shock protein (Hsp27) in neuroglia and neurons of the rat central nervous system. Journal of Computational Neurology 2000;428: 495–510.
  • Krueger-Naug AMR, Emsley JG, Myers TL, Currie RW, Clarke DB. Injury to retinal ganglion cells induces expression of the small heat shock protein hsp27 in the rat visual system. Neuroscience 2002;110: 653–665.
  • Dean DO, Tytell M. Hsp25 and -90 immunoreactivity in the normal rat eye. Investigative Ophthalmology & Visual Science 2001;42:3031–3040.
  • Plumier J.-CL, Armstrong JN, Landry J, Babity JM, Robertson HA, Currie RW. Expression of the 27,000 mol. wt heat shock protein following kainic acid-induced status epilepticus in the rat. Neuroscience 1996;3: 849–856.
  • Hopkins DA, Plumier J.-CL, Currie RW. Induction of the 27-kDa heat shock protein (Hsp27) in the rat medulla oblongata after vagus nerve injury. Experimental Neurology 1998;153: 173–183.
  • Fleshner M, Campisi J, Amiri L, Diamond DM. Cat exposure induces both intra- and extracellular Hsp72: the role of adrenal hormjones. Psychoneuroendocrinology 2004;29:1142–1152.
  • D'Souza SM, Brown IR. Constitutive expression of heat shock proteins Hsp90, Hsc70, Hsp70 and Hsp60 in neural and non-neural tissues of the rat during postnatal development. Cell Stress Chaperones 1998;3:188–199.
  • Calabrese V, Scapagnini G, Ravagna A, Colombrita C, Spadaro F, Butterfield DA, Giuffrida Stella AM. Increased expression of heat shock proteins in rat brain during aging: relationship with mitochondrial function and glutathione redox state. Mechanisms of Age Development 2004;125:325–335.
  • Currie RW, White FP. Trauma-induced protein in rat tissues: a physiological role for a 'heat shock' protein? Science 1981;214:72–73.
  • Currie, RW, White, FP. Characterization of the synthesis and accumulation of a 71-kilodalton protein induced in rat tissues after hyperthermia. Canadian Journal of Biochemical Cell Biology 1983;61:438–446.
  • Bechtold DA, Rush SJ, Brown IR. Localization of the heat-shock protein Hsp70 to the synapse following hyperthermic stress in the brain. Journal of Neurochemistry 2000;74: 641–646.
  • Bechtold DA, Brown IR. Induction of Hsp27 and Hsp32 stress proteins and vimentin in glial cells of the rat hippocampus following hyperthermia. Neurochemistry Research 2003;28:1163–1174.
  • Sasara T, Cizkova D, Mestril R, Galik J, Sugahara K, Marsala M. Spinal heat shock protein (70) expression: effect of spinal ischemia, hyperthermia (42°C)/hypothermia (27°C), NMDA receptor activation and potassium evoked depolarization on the induction. Neurochemistry International 2004;44:53–64.
  • Cizkova D, Carmel JB, Yamamoto K, Kakinohana 0, Sun D, Hart RP, Marsala M. Characerization of spinal H5P72 induction and development of ischemic tolerance after spinal ischemia in rats. Experimental Neurology 2004;185: 97–108.
  • Plumier JC, David JC, Robertson HA, Currie RW. Cortical application of potassium chloride induces the low-molecular weight heat shock protein (Hsp27) in astrocytes. Journal of Cerebral Blood Flow Metabolism 1997;17:781–790.
  • Lewis SE, Mannion RJ, White FA, Coggeshall RE, Beggs S, Costigan M, Martin JL, Dillmann WH, Woolf CJ. A role for H5P27 in sensory neuron survival. Journal of Neuroscience 1999;19: 8945–8953.
  • Krueger-Naug AMR, Emsley JG, Myers TL, Currie RW, Clarke DB. Administration of brain-derived neurotrophic factor suppresses the expression of heat shock protein 27 in rat retinal ganglion cells following axotomy. Neuroscience 2003;116: 49–58.
  • Michaud S, Tanguay RM. Expression of the Hsp23 chaperone during Drosophila embryogenesis: association to distinct neural and glial lineages. BMC Development Biology 2003;3:9–21.
  • Mehlen P, Coronas V, Ljubic-Thibal V, Ducasse C, Granger L, Jourdan F, Arrigo A.-P. Small stress protein Hsp27 accumulation during dopamine-mediated differentiation of rat olfactory neurons counteracts apoptosis. Cell Death Difference 1999;6: 227–223.
  • Blake, MJ, Fargnoli, J, Gershon, D, Hobrook, NJ. Concomitant decline in heat-induced hyperthermia and HSP70 mRNA expression in aged rats. American Journal of Physiology 1991;663–667.
  • Pardue S, Groshan K, Raese JD, Morrison-Bogorad M. Hsp70 mRNA induction is reduced in neurons of aged rat hippocampus after thermal stress. Neurobiology of Aging 1992;661–672.
  • Barone FC, White RF, Spera PA, Ellison J, Currie RW, Wang X, Feuerstein GZ. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 1998;29: 1937–1951.
  • Dhodda VK, Sailor KA, Bowen KK, Vemuganti R. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. Journal of Neurochemistry 2004;89:73–89.
  • Li Y, Roth S, Laser M, Ma J.-X, Crosson CE. Retinal preconditioning and the induction of heat-shock protein 27. Investigative Ophtalmology, Visual Science 2003;44: 1299–1304.
  • Valentim LM, Rodnight R, Geyer AB, Horn AP, Tavares A, Cimarosti H, Netto CA, Salbego CG. Changes in heat shock protein 27 phosphorylation and immunocontent in response to preconditioning in oxygen and glucose deprivation in organotypic hippocampal cultures. Neuroscience 2003;118:379–386.
  • Pringle AK, Thomas SJ, Signorelli F, Iannotti F. Ischaemic pre-conditioning in organotypic hippocampal slice cultures is inversely correlated to the induction of the 72 kDa heat shock protein (H5P72). Brain Research 1999;867:62–69.
  • Hung C.-H, Lin M.-T, Liao J.-F, Wang J.-J. Scopolamine-induced amnesia can be prevented by heat shock pretreatment in rats. Neuroscience Letters 2004;364:63–66.
  • Lin Y.-W, Yang H.-W, Min M.-Y, Chui T.-H. Heat-shock pretreatment prevents suppression of long-term potentiation induced by scopolamine in rat hippocampal CA1 synapses. Brain Research 2004;999: 222–226.
  • Kwong JM, Lam TT, Caprioli J. Hyperthermic pre-conditioning protects retinal neurons from N-methyl-D-aspartate (NMDA)-induced apoptosis in rat. Brain Research 2003;970:119–130.
  • Lee JE, Yenari MA, Sun GH, Xu L, Emond MR, Cheng D, Steinberg GK, Giffard RG. Differential neuroprotection from human heat shock protein 70 overexpression in in vitro and in vivo models of ischemia and ischemia-like conditions. Experimental Neurology 2001;170:129–139.
  • Plumier J.-C, Krueger AM, Currie RW, Kontoyiannis D, Kollias G, Pagoulatos GN. Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones 1997;2:162–167 .
  • Kelly S, Bieneman A, Horsburgh K, Hughes D, Sofroniew MV, McCulloch J, Uney JB. Targeting expression of hsp70i to discrete neuronal populations using the Lmo-1 promoter: assessment of the neuroprotective effects of hsp70i in vivo and in vitro. Journal of Cerebral Blood Flow Metabolism 2001;21: 972–981.
  • Tsuchiya D, Hong S, Matsumori Y, Kayama T, Swanson RA, Dillman WH, Liu J, Panter SS, Weinstein PR. Overexpression of rat heat shock protein 70 reduces neuronal injury after transient focal ischemia, transient global ischemia, and kainic acid-induced seizures. Neurosurgery 2003;53: 1179–1187.
  • Akbar MT, Lundber AMC, Vidyadaran S, Wells EK, Dolatshad H., Wynn S, Wells DJ, Latchman DS, de Belleroche J. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. Journal of Biological Chemistry 2003;278: 19956–19965.
  • Mehlen P, Schulze-Osthoff K, Arrigo A.-P. Small stress proteins as novel regulators of apoptosis: constitutive expression of hsp27 blocks Fas- and staurosporine induced cell death. Journal of Biological Chemistry 1996;271:16510–16514.
  • Beim SC, Perrelet D, Kato AC, Scholz J, Decosterd I, Mannion RJ, Bakowska JC, Woolf CJ. Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron 2002;36:45–56.
  • Kalwy SA, Akbar MT, Coffin RS, de Belleroche J, Latchman DS. Heat shock protein 27 delivered via a herpes simplex virus vector can protect neurons of the hippocampus against kainic-acid-induced cell loss. Molecular Brain Research 2003;111: 91–103.
  • Landry J, Chretien P, Lambert H, Hickey E, Weber LA. Heat shock resistance conferred by expression of human Hsp27 gene in rodent cells. Journal of Cell Biology 1989;109: 7–15.
  • Lavoie JN, Gingras-Breton G, Tanguay RM, Landry J. Induction of chines hamster HSP27 gene expression in mouse cells confers resistance to heat shock. Journal of Biological Chemistry 1993;268:3420–3429.
  • Samali A, Cotter TG. Heat shock proteins increases resistance to apoptosis. Experimental Cell Research 1996;223:163–170.
  • Mehlen P, Preville X, Chareyron P, Briolay J, Klemenz R, Arrigo A.-P. Constitutive expression of human hsp27, Drosophila hsp27 and human a-B crystallin confers resistance to tumor necrosis factor- and oxidative stress-induced cytotoxicity in stably transfected murine L929 fibroblasts. Journal of Immunology 1995;154: 363–374.
  • Wagstaff MJ, Collaco-Moraes Y, Smith J, de Belleroche JS, Coffin RS, Latchman DS. Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virus-based vector. Journal of Biological Chemistry 1999;274:5061–5069.
  • Yokoyama A, Oshitari T, Negishi H, Dezawa M, Mizota A, Adachi-Usami E. Protection of retinal ganglion cells from ischemia-reperfusion injury by electrically applied Hsp27. Investigative Ophthalmology, Visual Science 2001;42: 3283–3286.
  • Mehlen P, Mehlen A, Godet J, Arrigo A.-P. Hsp27 as a shift between differentiation and apoptosis in embryonic stem cells. Journal of Biological Chemistry 1997;272: 31657–31665.
  • Merendino A, Paul C, Costa MA, Melis M, Chiappara G, Izzo V, Vignola AM, Arrigo A.-P. Heat shock protein-27 protects human bronchial epithelial cells against oxidative stress mediated apoptosis: implication in asthma. Cell Stress and Chaperones 2002;7: 269–280.
  • Chong KY, Lai CC, Lille S, Chang C, Su CY. Stable overexpression of the constitutive form of heat shock protein 70 confers oxidative protection. Journal of Molecular Cell Cardiology 1998;30: 599–608.
  • Hosoi N, Itoh H, Koyama K, Tashima Y. Overexpression of the heat shock protein 70 confers protection against oxidative injury in HEPG2 cells. Transplant Proceedings 2002;34:2647–2648.
  • Turman MA, Rosenfeld SL. Heat shock protein 70 overexpression protects LLC-PK1 tubular cells from heat shock but not hypoxia. Kidney International 1999;55:189–197.
  • Williams RS, Thomas JA, Fina M, German Z, Benjamin IJ. Human heat shock protein 70 (hsp70) protects murine cells from injury during metabolic stress. Journal of Clinical Investigations 1993;92: 503–508.
  • Mestril R, Chi SH, Sayen MR, O'Reilly K, Dillman WH. Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. Journal of Clinical Investigations 1994;93: 759–767.
  • Brar BK, Stephanou A, Wagstaff MJ, Coffin RS, Marber MS, Englemann G, Latchman DS. Heat shock protein delivered with a virus vector can protect cardiac cells against apoptosis as well as against thermal or hypoxic stress. Journal of Molecular Cell Cardiology 1999;31:135–146.
  • Mailhos C, Howard MK, Latchman DS. Heat shock proteins hsp90 and hsp70 protect neuronal cells from thermal stress but not from programmed cell death. Journal of Neurochemistry 1994;63: 1787–1795.
  • Uney JB, Staley K, Tyers P, Sofroniew MV, Kew JN. Transfection with hsp70i protects rat dorsal root ganglia neurones and glia from heat stress. Gene Therapy 1994;1: 565.
  • Beaucamp N, Harding TC, Geddes BJ, Williams J, Uney JB. Overexpression of hsp70i facilitates reactivation of intracellular proteins in neurones and protects them from denaturing stress. FEBS Letters 1998;441: 215–219.
  • Gold BG, Voda J, Yu X, Gordon H. The immunosuppressant FK506 elicits a neuronal heat shock response and protects against acrylamide neuropathy. Experimental Neurology 2004;187:160–170.
  • Ren M, Leng Y, Jeong M, Leeds PR, Chuang D.-M. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. Journal of Neurochemistry 2004;89:1358–1367.
  • Park KH, Cozier F, Ong OC, Caprioli J. Induction of heat shock protein 72 protects retinal ganglion cells in a rat glaucoma model. Investigative Ophthalmology, Visual Science 2001;42:1522–1530.
  • Ishii Y, Kwong JMK, Caprioli J. Retinal ganglion cell protection with geranylgeranylacetone, a heat shock protein inducer, in a rat glaucoma model. Investigative Opthalmology, Visual Science 2003;33:1982–1992.
  • Sakai M, Sakai H, Nakamura Y, Fukuchi T, Sawaguchi S. Immunolocalization of heat shock proteins in the retina of normal monkey eyes and monkey eyes with laser-induced glaucoma. Japanese Journal of Ophthalmology 2003;47:42–52.
  • Jakob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chaperones. Journal of Biological Chemistry 1993;268:1517–1520.
  • Lavoie JN, Hickey E, Weber LA, Landry J. Modulation of actin microfilament dynamics and fluid phase pinocytosis by phosphorylation of heat shock protein 27. Journal of Biological Chemistry 1993;32:24210–24214.
  • Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J. Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Molecular Cell Biology 1995;15: 505–516.
  • Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. Journal of Cell Science 1997;110: 357–368.
  • Huot J, Houle F, Spitz DR, Landry J. H5P27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Research 1996;56:273–279.
  • Geum D, Son GH, Kim K. Phosphorylation-dependent cellular localization and thermoprotective role of heat shock protein 25 in the hippocampal progenitor cells. Journal of Biological Chemistry 2002;277: 19913–19921.
  • Theriault JR, Lambert H, Chavez-Zobel AR, Charest G, Lavigne P, Landry J. Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. Journal of Biological Chemistry 2004;279: 23463–23471.
  • Tezel G, Wax MB. The mechanisms of hsp27 antibody mediated apoptosis in retinal neuronal cells. Journal of Neuroscience 2000;10:3552–3562.
  • Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Molecular Cell Biol 2000;20: 7146–7159.
  • Gabai VL, Mabuchi D, Mosser DD, Sherman MY. Hsp72 and stress kinase c-jun-N-terminal kinase regulate the bid-dependent pathway in tumor necrosis factor-induced apoptosis. Mol Cell Biology 2002;22:3415–3424.
  • Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo, AP. Hsp27 as a negative regulator of cytochrome c release. Molecular Cell Biology 2002;22: 816–834.
  • Bruey J-M, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo A-P, Kroemer G, Solary E, Garrido C. Hsp27 negatively regulates cell death by interacting with cytochrome c. Natural Cell Biology 2000;2: 645–652.
  • Saleh A, Srinivasula SM, Blakir L, Robbins PD, Alnemri ES. Negative regulation of the Apaf-1 apoptosome by Hsp70. Natural Cell Biology 2000;2: 476–483.
  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Natural Cell Biology 2000;2:469–475.
  • Garrido C, Bruey J-M, Fromentin A, Hammann A, Arrigo AP, Solary E. H5P27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB Journal 1999;13: 2061–2070.
  • Pandey P, Farber R, Nakazawa A, Kumar S, Bharti A, Nalin C, Weichselbaum R, Kufe D, Kharbanda S. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene 2000;19: 1975–1981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.