669
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Stress proteins in Alzheimer's disease

, , &
Pages 421-431 | Received 07 Feb 2005, Accepted 28 Mar 2005, Published online: 09 Jul 2009

References

  • Lin MT, Beal MF. The oxidative damage theory of aging. Clinical Neuroscience Research 2003;2:305–315.
  • Markesbery WR. Oxidative stress hypothesis in Alzheimer's disease. Free Radical Biology Medicine 1997;23:134–147.
  • Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer's disease brain: Central role for amyloid beta-peptide. Trends in Molecular Medicine 2001;7:548–554.
  • D'Andrea MR, Nagele RG, Wang HY, Peterson PA, Lee DH. Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease. Histopathology 2001;38:120–134.
  • Selkoe DJ, Podlisny MB. Deciphering the genetic basis of Alzheimer's disease. Annual Reviews of Genomics & Human Genetics 2002;3:67–99.
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 2002;297:353–356.
  • Oddo S, Caccarno A, Shepherd JD, Murphy MP, Golde TE, Kayed R, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron 2003;39:409–421.
  • Selkoe DJ. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends in Cellular Biology 1998;8:447–453.
  • Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nature Reviews in Neuroscience 2005;6:11–22.
  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Abetal -42 are potent central nervous system neurotoxins. Proceedings of the National Academy of Sciences (USA) 1998;95:6448–6453.
  • Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, et al. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. Journal of Neuroscience 1999;19:8876–8884.
  • Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annual Reviews of Neuroscience 2003;26:267–298.
  • Gouras GK, Tsai J, Naslund J, Vincent B, Edgar M, Checler F, et al. Intraneuronal Abeta42 accumulation in human brain. American Journal of Pathology 2000;156:15–20.
  • Yang AJ, Chandswangbhuvana D, Margol L, Glabe CG. Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abetal -42 pathogenesis. Journal of Neuroscience Research 1998;52:691–698.
  • Zhang Y, McLaughlin R, Goodyer C, LeBlanc A. Selective cytotoxicity of intracellular amyloid beta peptidel - 42 through p53 and Bax in cultured primary human neurons. Journal of Cell Biology 2002;156:519–529.
  • Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, et al. Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. American Journal of Pathology 2002161:1869-1879.
  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003;300:486–489.
  • Kosik KS, Shimura H. Phosphorylated tau and the neurodegenerative foldopathies. Biochimica et Biophysica Acta 2005;1739:298–310.
  • Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM. Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nature Genetics 1999;23: 425–428.
  • Chan HY, Warrick JM, Andriola I, Merry D, Bonini NM. Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila. Human Molecular Genetics 2002;11:2895–2904.
  • Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P, et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 2000;408:101–106.
  • Kazemi-Esfarjani P, Benzer S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 2000;287:1837–1840.
  • Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, et al. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Human Molecular Genetics 2001;10:1511–1518.
  • Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 2002;295:865–868.
  • Dewji NN, Do C. Heat shock factor-1 mediates the transcriptional activation of Alzheimer's beta-amyloid precursor protein gene in response to stress. Brain Research & Molecular Brain Research 1996;35:325–328.
  • Salbaum JM, Weidemann A, Lemaire HG, Masters CL, Beyreuther K. The promoter of Alzheimer's disease amyloid A4 precursor gene. EMBO Journal 1988;7: 2807–2813.
  • Ciallella JR, Rangnekar VV, McGillis JP. Heat shock alters Alzheimer's beta amyloid precursor protein expression in human endothelial cells. Journal of Neuroscience Research 1994;37:769–776.
  • Dewji NN, Do C, Bayney RM. Transcriptional activation of Alzheimer's beta-amyloid precursor protein gene by stress. Brain Research & Molecular Brain Research 1995;33:245–253.
  • Frederikse PH, Garland D, Zigler Jr JS, Piatigorsky J. Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells. Journal of Biological Chemistry 1996;271:10169–10174.
  • Johnson G, Refolo LM, Merril CR, Wallace W. Altered expression and phosphorylation of amyloid precursor protein in heat shocked neuronal PC12 cells. Brain Research & Molecular Brain Research 1993; 19:140–148.
  • Kogel D, Schomburg R, Schurmann T, Reimertz C, Konig HG, Poppe M, et al. The amyloid precursor protein protects PC12 cells against endoplasmic reticulum stress-induced apoptosis. Journal of Neurochemistry 2003;87:248–256.
  • Hardy J. Amyloid, the presenilins and Alzheimer's disease. Trends in Neuroscience 1997;20:154–159.
  • de la Torre JC. Alzheimer disease as a vascular disorder: Nosological evidence. Stroke 2002;33:1152–1162.
  • Shepherd CE, Bowes S, Parkinson D, Cambray-Deakin M, Pearson RC. Expression of amyloid precursor protein in human astrocytes in vitro: Isoform-specific increases following heat shock. Neuroscience 2000;99:317–325.
  • Misonou H, Morishima-Kawashima M, Ihara Y. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry 2000;39:6951–6959.
  • Tong Y, Zhou W, Fung V, Christensen MA, Qing H, Sun X, et al. Oxidative stress potentiates BACE1 gene expression and Abeta generation. Journal of Neural Transmission 2005;112:455–469.
  • Li F, Calingasan NY, Yu F, Mauck WM, Toidze M, Almeida CG, et al. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. Journal of Neurochemistry 2004;89:1308–1312.
  • Pereira C, Santos MS, Oliveira C. Mitochondrial function impairment induced by amyloid beta-peptide on PC12 cells. Neuroreport 1998;9: 1749–1755.
  • Hoyer S. Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes and consequences: An update. Experimental Gerontology 2000;35:1363–1372.
  • Jang JH, Surh YJ. beta-Amyloid induces oxidative DNA damage and cell death through activation of c-Jun N terminal kinase. Annals of the New York Academy of Science 2002;973:228–236.
  • Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, et al. Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer's disease: A chronic oxidative paradigm for testing antioxidant therapies in vivo. American Journal of Pathology 1998;152:871–877.
  • Pappolla MA, Omar RA, Kim KS, Robakis NK. Immunohistochemical evidence of oxidative [corrected] stress in Alzheimer's disease. American Journal of Pathology 1992;140:621–628.
  • Rutkowski DT, Kaufman RJ. A trip to the ER: Coping with stress. Trends in Cell Biology 2004;14:20–28.
  • Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000;403:98–103.
  • Terro F, Czech C, Esclaire F, Elyarnan W, Yardin C, Baclet MC, et al. Neurons overexpressing mutant presenilin-1 are more sensitive to apoptosis induced by endoplasmic reticulum-Golgi stress. Journal of Neuroscience Research 2002;69:530–539.
  • Chan SL, Culmsee C, Haughey N, Klapper W, Mattson MP. Presenilin-1 mutations sensitize neurons to DNA damage-induced death by a mechanism involving perturbed calcium homeostasis and activation of calpains and caspase-12. Neurobiology of Disease 2002;11: 2–19.
  • Siman R, Flood DG, Thinakaran G, Neumar RW. Endoplasmic reticulum stress-induced cysteine protease activation in cortical neurons: Effect of an Alzheimer's disease-linked presenilin-1 knock-in mutation. Journal of Biological Chemistry 2001;276:44736–44743.
  • Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biology 1999;1:479–485.
  • Guo Q, Sopher BL, Furukawa K, Pham DG, Robinson N, Martin GM, et al. Alzheimer's presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: Involvement of calcium and oxyradicals. Journal of Neuroscience 1997;17:4212–4222.
  • Fischer H, Koenig U, Eckhart L, Tschachler E. Human caspase 12 has acquired deleterious mutations. Biochemistry & Biophysical Research Communications 2002;293:722–726.
  • Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyarna Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. Journal of Cell Biology 2004;165:347–356.
  • Katayama T, Imaizumi K, Honda A, Yoneda T, Kudo T, Takeda M, et al. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. Journal of Biological Chemistry 2001;276:43446–43454.
  • Imaizumi K, Miyoshi K, Katayama T, Yoneda T, Taniguchi M, Kudo T, et al. The unfolded protein response and Alzheimer's disease. Biochimica et Biophysica Acta 2001;1536:85–96.
  • Chai Y, Koppenhafer SL, Bonini NM, Paulson HL. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. Journal of Neuroscience 1999;19:10338–10347.
  • Jana NR, Tanaka M, Wang G, Nukina N. Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: Their role in suppression of aggregation and cellular toxicity. Human Molecular Genetics 20009:2009-2018.
  • Lukiw WJ. Gene expression profiling in fetal, aged, and Alzheimer hippocampus: A continuum of stress-related signaling. Neurochemical Research 2004;29:1287–1297.
  • Yoo BC, Seidl R, Cairns N, Lubec G. Heat-shock protein 70 levels in brain of patients with Down syndrome and Alzheimer's disease. Journal of Neural Transmission 1999;57 (Suppl):315–322.
  • Hamos JE, Oblas B, Pulaski-Salo D, Welch WJ, Bole DG, Drachman DA. Expression of heat shock proteins in Alzheimer's disease. Neurology 1991;41:345–350.
  • Perez N, Sugar J, Charya S, Johnson G, Merril C, Bierer L, et al. Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer's disease. Brain Research & Molecular Brain Research 1991;11:249–254.
  • Magrane J, Smith RC, Walsh K, Querfurth HW. Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. Journal of Neuroscience 200424:1700-1706.
  • Dou F, Netzer WJ, Tanemura K, Li F, Hard FU, Takashima A, et al. Chaperones increase association of tau protein with microtubules. Proceedings of the National Academy of Sciences (USA) 2003;100:721–726.
  • Wallace W, Johnson G, Sugar J, Merril CR, Refolo LM. Reversible phosphorylation of tau to form A68 in heat-shocked neuronal PC12 cells. Brain Research & Molecular Brain Research 1993;19: 149–155.
  • Lee VM, Balin BJ, Otvos L J., Trojanowski JQ. A68: A major subunit of paired helical filaments and derivatized forms of normal Tau. Science 1991;251: 675–678.
  • Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annual Reviews of Neuroscience 2001;24:1121–1159.
  • Takashima A, Honda T, Yasutake K, Michel G, Murayama 0, Murayama M, et al. Activation of tau protein kinase 1/glycogen synthase kinase-3beta by amyloid beta peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neuroscience Research 1998;31: 317–323.
  • Takashima A, Noguchi K, Michel G, Mercken M, Hoshi M, Ishiguro K, et al. Exposure of rat hippocampal neurons to amyloid beta peptide (25-35) induces the inactivation of phosphatidyl inosito1-3 kinase and the activation of tau protein kinase 1/glycogen synthase kinase-3 beta. Neuroscience Letters 1996;203:33–36.
  • Kay-tor MD, Orr HT. The GSK3 beta signaling cascade and neurodegenerative disease. Current Opinions in Neurobiology 2002;12: 275–278.
  • Shimura H, Schwartz D, Gygi SP, Kosik KS. CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. Journal of Biological Chemistry 2004;279:4869–4876.
  • Murata S, Minami Y, Minami M, Chiba T, Tanaka K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Reports 2001;2: 1133–1138.
  • Petrucelli L, Dickson D, Kehoe K, Taylor J, Snyder H, Grover A, et al. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Human Molecular Genetics 2004;13:703–714.
  • Kouchi Z, Sorimachi H, Suzuki K, Ishiura S. Proteasome inhibitors induce the association of Alzheimer's amyloid precursor protein with Hsc73. Biochemical and Biophysical Research Communications 1999;254:804–810.
  • Mori H, Kondo J, Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer's disease. Science 1987;235:1641–1644.
  • Perry G, Siedlak SL, Richey P, Kawai M, Cras P, Kalaria RN, et al. Association of heparan sulfate proteoglycan with the neurofibrillary tangles of Alzheimer's disease. Journal of Neuroscience 1991;11:3679–3683.
  • Cole GM, Timiras PS. Ubiquitin-protein conjugates in Alzheimer's lesions. Neuroscience Letters 1987;79:207–212.
  • Marambaud P, Chevallier N, Barelli H, Wilk S, Checler F. Proteasome contributes to the alpha-secretase pathway of amyloid precursor protein in human cells. Journal of Neurochemistry 1997;68:698–703.
  • da Costa CA, Ancolio K, Checler F. C-terminal maturation fragments of presenilin 1 and 2 control secretion of APP alpha and A beta by human cells and are degraded by proteasome. Molecular Medicine 1999;5: 160–168.
  • Nunan J, Shearman MS, Checler F, Cappai R, Evin G, Beyreuther K, et al. The C-terminal fragment of the Alzheimer's disease amyloid protein precursor is degraded by a proteasome-dependent mechanism distinct from gamma-secretase. European Journal of Biochemistry 2001;268:5329–5336.
  • Flood F, Murphy S, Cowburn RF, Lannfelt L, Walker B, Johnston JA. Proteasome-mediated effects on amyloid precursor protein processing at the gamma-secretase site. Biochemical Journal 2005;385:545–550.
  • Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, Link CD. Interaction of intracellular beta amyloid peptide with chaperone proteins. Proceedings of the National Academy of Sciences (USA) 2002; 99:9439–9444.
  • Lee GJ, Roseman AM, Saibil HR, Vierling E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO Journal 1997;16:659–671.
  • Horwitz J. The function of alpha-crystallin in vision. Seminars in Cell & Developmental Biology 2000;11: 53–60.
  • Goldstein LE, Muffat JA, Cherny RA, Moir RD, Ericsson MH, Huang X, et al. Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer's disease. Lancet 2003;361:1258–1265.
  • Yoo BC, Kim SH, Cairns N, Fountoulakis M, Lubec G. Deranged expression of molecular chaperones in brains of patients with Alzheimer's disease. Biochemical & Biophysical Research Communications 2001;280:249–258.
  • Mao JJ, Katayama S, Watanabe C, Harada Y, Noda K, Yamamura Y, et al. The relationship between alphaB-crystallin and neurofibrillary tangles in Alzheimer's disease. Neuropathology & Applied Neurobiology 2001;27:180–188.
  • Goldbaum 0, Richter-Landsberg C. Proteolytic stress causes heat shock protein induction, tau ubiquitination, and the recruitment of ubiquitin to tau-positive aggregates in oligodendrocytes in culture. Journal of Neuroscience 2004;24:5748–5757.
  • Liang H. Interaction between beta-amyloid and lens alphaB-crystallin. FEBS Letters 2000;484:98–101.
  • Stege GJ, Renkawek K, Overkamp PS, Verschuure P, van Rijk AF, Reijnen-Aalbers A, et al. The molecular chaperone alphaB-crystallin enhances amyloid beta neurotoxicity. Biochemical & Biophysical Research Communications 1999;262:152–156.
  • Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K. Alpha B crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer's disease. Journal of the Neurological Sciences 1993;119: 203–208.
  • Renkawek K, Bosman GJ, Gaestel M. Increased expression of heat-shock protein 27 kDa in Alzheimer disease: A preliminary study. Neuroreport 1993;5: 14–16.
  • Renkawek K, Bosman GJ, de Jong WW. Expression of small heat-shock protein hsp 27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta Neuropathologica (Berlin) 1994;87:511–519.
  • Kudva YC, Hiddinga HJ, Butler PC, Mueske CS, Eberhardt NL. Small heat shock proteins inhibit in vitro A beta(1–42) amyloidogenesis. FEBS Letters 1997;416: 117–121.
  • Shimura H, Miura-Shimura Y, Kosik KS. Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. Journal of Biological Chemistry 2004;279:17957–17962.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.